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• Topics:

➢ 3 parts of a generalized (single-level or multilevel) model

➢ Link functions and conditional distributions for binary 

outcomes (and categorical outcomes via submodels)

➢ From generalized single-level to multilevel models

➢ From multilevel models to explanatory measurement models
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3 Parts of Generalized Linear Models

1. Non-normal conditional distribution of 𝒚𝒊:

➢ General linear models use a normal conditional distribution to describe 
the 𝑦𝑖 variance remaining after prediction via the fixed effects → we call 
this residual variance, which is estimated separately and usually 
assumed constant across observations (unless modeled otherwise)

➢ Other distributions are more plausible for categorical/bounded/skewed 
outcomes, so ML function maximizes the likelihood using those instead

➢ Btw, not all conditional distributions will have a single, separately 
estimated residual variance (e.g., binary → Bernoulli, count → Poisson)

➢ Some call this part the “random component” (but ≠ random effects!)

➢ Why care? To get the most correct standard errors for fixed effects 
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3 Parts of Generalized Linear Models

2. Link Function = 𝒈(⋅): How the conditional mean to be predicted is 

transformed so that the model predicts an unbounded outcome instead

➢ Inverse link 𝒈−𝟏(⋅)= how to go back to conditional mean in data scale 

➢ Predicted outcomes (found via inverse link) will then stay within bounds

➢ e.g., binary outcome: conditional mean to be predicted is probability 

of 𝒚𝒊 = 𝟏, so the model predicts a linked outcome (when inverse-linked, 

the predicted probability outcome will stay between 0 and 1)

➢ e.g., count outcome: conditional mean is expected count, so log of 

the expected count is predicted so that the expected count stays > 0

➢ e.g., normal outcome: an “identity” link function (𝑦𝑖 * 1) is used given 

that the conditional mean to be predicted is already unbounded…
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A Real-Life Bummer of an Identity Link
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3 Parts of Generalized Linear Models

3. Linear Predictor: How the fixed (and random) effects of predictors 

combine additively to predict a link-transformed conditional mean

➢ This is the same as usual, except the linear predictor directly predicts 

the link-transformed (model-scale) conditional mean, which we then 

convert (via inverse link) back into the data-scale conditional mean

▪ e.g., predict logit of probability directly, but inverse-link back to probability

▪ e.g., predict log of expected count, but inverse-link back to expected count

➢ That way we can still use the familiar “one-unit change” language to 

describe effects of model predictors (on the linked conditional mean)

➢ Btw, fixed effects are no longer determined: they now have to be found 

through ML iteratively, the same as any variance-related parameters
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Normal GLM for Binary Outcomes?

• Let’s say we have a single binary (0 or 1) outcome per 

individual to start with (𝑖 = individual in notation below)

• Mean of a binary outcome is the proportion of 1 values

➢ So given each person’s predictor values, the model tries to predict 

the conditional mean: the probability of having a 1: 𝒑(𝒚𝒊 = 𝟏)

▪ The conditional mean has more possible values than the outcome!

➢ What about a GLM?  𝒑(𝒚𝒊 = 𝟏) = 𝜷𝟎 + 𝜷𝟏(𝒙𝟏𝒊) + 𝜷𝟐(𝒙𝟐𝒊) + 𝒆𝒊

▪ 𝜷𝟎 = expected probability of 𝒚𝒊 = 𝟏 when all predictors = 0

▪ 𝜷’s = expected change in 𝒑(𝒚𝒊 = 𝟏) for per unit change in predictor

▪ 𝒆𝒊 = difference between observed and predicted binary values

➢ Model becomes 𝒚𝒊 = (𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐨𝐟 𝟏)  +  𝒆𝒊

➢ What could possibly go wrong???
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Normal GLM for Binary Outcomes?
• Problem #1: A linear relationship between 𝑥𝑖 and 𝑦𝑖??? 

• Probability of a 1 is bounded between 0 and 1, but predicted 

probabilities from a linear model aren’t going to be bounded 

• Linear relationship needs to shut off → made nonlinear

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 2 3 4 5 6 7 8 9 10 11

X Predictor

P
ro

b
 (

Y
=

1
)

??

??

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 2 3 4 5 6 7 8 9 10 11

X Predictor

P
ro

b
 (

Y
=

1
)

We have this… But we need this…

7    



SMiP 2024 MLM:  Lecture 2

Generalized Models for Binary Outcomes

• Solution to #1: Rather than predicting 𝒑(𝒚𝒊 = 𝟏) directly, the model 
transforms it into an unbounded outcome using a link function:

➢ Step 1: Transform probability into odds: 
𝑝𝑖

1−𝑝𝑖
=

prob 𝑦𝑖=1

prob(𝑦𝑖=0)

▪ If 𝑝 𝑦𝑖 = 1 = .7 then Odds(1) = 2.33; Odds(0) = 0.429

▪ But odds scale is skewed, asymmetric, and ranges 0 to +∞ → Not a good outcome!

➢ Step 2: Take natural log of odds → “logit” link:  𝐋𝐨𝐠
𝒑𝒊

𝟏−𝒑𝒊

▪ If 𝑝 𝑦𝑖 = 1 = .7, then Logit(1) = 0.846; Logit(0) = −0.846

▪ Logit scale is now symmetric about 0, range is ±∞ → Now a good outcome to predict!
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Image borrowed from Figure 17.3 of: Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: 

An introduction to basic and advanced multilevel modeling (2nd ed.). Sage. 
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Solution #1:  From Probability to Logits

• A Logit link is a nonlinear transformation of probability:

➢ Equal intervals in logits are NOT equal intervals of probability

➢ Logits range from ±∞ and are symmetric around prob = .5 (→ logit = 0)

➢ Now we can use a linear model → The model will be linear with respect to 

the predicted logit, which translates into a nonlinear prediction with respect to 

probability → the outcome conditional mean shuts off at 0 or 1 as needed

Probability: 

𝒑(𝒚𝒊 = 𝟏)

Logit 

(log odds): 

𝐋𝐨𝐠
𝒑𝒊

𝟏−𝒑𝒊

Zero-point on 

each scale:

Prob = .5

Odds = 1

Logit = 0

9    

Odds:
𝒑𝒊

𝟏−𝒑𝒊



SMiP 2024 MLM:  Lecture 2

Normal GLM for Binary Outcomes?
• What about a GLM?  𝒑(𝒚𝒊 = 𝟏) = 𝜷𝟎 + 𝜷𝟏(𝒙𝟏𝒊) + 𝜷𝟐(𝒙𝟐𝒊) + 𝒆𝒊

• If 𝒚𝒊 is binary, then 𝒆𝒊 can only be 2 things:  𝒆𝒊 = 𝒚𝒊 − ෝ𝒚𝒊

➢ If 𝒚𝒊 = 0 then 𝒆𝒊 
= (0 − predicted probability)

➢ If 𝒚𝒊 = 1 then 𝒆𝒊 = (1 − predicted probability)

• Problem #2a: So the residuals can’t be normally distributed

• Problem #2b: The residual variance can’t be constant over ෝ𝒚𝒊 as in GLM 

because the mean and variance are dependent

➢ Variance of binary variable: 𝑽𝒂𝒓 𝒚𝒊 = 𝒑 ∗ (𝟏 − 𝒑)
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Mean (𝑝)

Variance

Mean and Variance of a Binary Variable



Top image borrowed from: https://en.wikipedia.org/wiki/Normal_distribution 

Bottom image borrowed from: https://www.boost.org/doc/libs/1_70_0/libs/math/doc/html/math_toolkit/dist_ref/dists/bernoulli_dist.html
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Solution to #2:  Bernoulli Distribution
• Rather than using a normal conditional distribution for the 

outcome, we will use a Bernoulli conditional distribution
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3 Scales of Predicted Binary Outcomes

• Logit:  𝐋𝐨𝐠
𝒑(𝒚𝒊=𝟏)

𝒑(𝒚𝒊=𝟎)
= 𝜷𝟎 + 𝜷𝟏(𝒙𝟏𝒊) + 𝜷𝟐(𝒙𝟐𝒊)

➢ Predictor slopes are linear and additive like usual, but 

𝜷 = difference in logit per one-unit difference in predictor

• Odds:  
𝒑(𝒚𝒊=𝟏)

𝒑(𝒚𝒊=𝟎)
= 𝐞𝐱𝐩 𝜷𝟎 + 𝜷𝟏𝒙𝟏𝒊 + 𝜷𝟐𝒙𝟐𝒊

• Probability:     𝒑 𝒚𝒊 = 𝟏 =
 𝐞𝐱𝐩 𝜷

𝟎
+𝜷

𝟏
𝒙𝟏

𝒊
+𝜷

𝟐
𝒙𝟐

𝒊

𝟏+𝐞𝐱𝐩 𝜷
𝟎
+𝜷

𝟏
𝒙𝟏

𝒊
+𝜷

𝟐
𝒙𝟐

𝒊

or equivalently   𝒑 𝒚𝒊 = 𝟏 =
𝟏

𝟏+𝐞𝐱𝐩 −𝟏(𝜷
𝟎
+𝜷

𝟏
𝒙𝟏

𝒊
+𝜷

𝟐
𝒙𝟐

𝒊
)

• This “logistic regression” model can be estimated using SAS PROC GLIMMIX 

(LINK=LOGIT, DIST=BINARY) or PROC LOGISTIC; STATA LOGIT/GLM; or 

R GLM family = binomial(link = logit))
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Converting Across the 3 Outcome Scales

• e.g., for 𝐋𝐨𝐠
𝒑(𝒚𝒊=𝟏)

𝒑(𝒚𝒊=𝟎)
= ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒙𝟏𝒊) + 𝜷𝟐(𝒙𝟐𝒊)

  

• You can unlogit the model-predicted conditional mean all the way back into 
probability to express predicted outcomes, but you can only unlogit the 
slopes back into odds ratios (not all the way back to changes in probability)

• Order of operations: build predicted logit outcome, then logit → probability
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Direction Conditional 

Mean

Slope 

for 𝒙𝟏𝒊

Slope 

for 𝒙𝟐𝒊

Predicted logit outcome

(i.e., given by “the link”):
ෝ𝒚𝒊 𝜷𝟏 𝜷𝟐

From logits to odds (or 

odds ratios for effect sizes):

Odds: 

𝐞𝐱𝐩(ෝ𝒚𝒊)
Odds ratio: 

𝐞𝐱𝐩(𝜷𝟏)
Odds ratio:

𝐞𝐱𝐩(𝜷𝟐)

From logits to probability 

(given by the “inverse link”):

𝐞𝐱𝐩(𝒚𝒊)

𝟏 + 𝐞𝐱𝐩(ෝ𝒚𝒊)

Doesn’t 

make 

any sense!

Doesn’t 

make 

any sense!
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Effect Sizes for Binary Outcomes
• Odds Ratio (OR) → effect size for predictors of binary outcomes

• e.g., if 𝑥11 is binary 
and 𝑥2𝑖 is quantitative

➢ OR for unique effect of 𝑥1𝑖 = exp 𝛽1 =
𝑝 𝑦𝑖 = 1 𝑥1𝑖 = 1 /𝑝 𝑦𝑖 = 0 𝑥1𝑖 = 1
𝑝 𝑦𝑖 = 1 𝑥1𝑖 = 0 /𝑝 𝑦𝑖 = 0 𝑥1𝑖 = 0

 

➢ OR for unique effect of 𝑥2𝑖 = exp 𝛽2 : same principle, but denominator 
is some reference value (e.g., mean) and numerator is “one unit” higher

➢ For each, you’ll have to decide at what value to hold other predictors 
to get the exact probabilities, but the odds ratio will only change if the 
predictors are part of an interaction (from marginal → conditional)

• OR is asymmetric: ranges from 0 to +∞; where 1 = no relationship

➢ e.g., if 𝜷𝟏 = 𝟏, then exp 𝛽1 = 2.72 → odds of 
𝑦𝑖 = 1 are 2.72 times higher per unit greater 𝑥1𝑖 

➢ e.g., if 𝜷𝟏 = −𝟏, then exp 𝛽1 = 0.37→ odds of 
𝑦𝑖 = 1 are 0.37 times higher per unit greater 𝑥1𝑖

➢ Can be more intuitive to phrase slopes as positive! 
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𝐋𝐨𝐠
𝒑(𝒚𝒊=𝟏)

𝒑(𝒚𝒊=𝟎)
= 𝜷𝟎 + 𝜷𝟏(𝒙𝟏𝒊) + 𝜷𝟐(𝒙𝟐𝒊)

slope x pred logit pred odds odds ratio

1 1 1 2.72

1 2 2 7.39 2.72

1 3 3 20.09 2.72

1 4 4 54.60 2.72

slope x pred logit pred odds odds ratio

-1 1 -1 0.37

-1 2 -2 0.14 0.37

-1 3 -3 0.05 0.37

-1 4 -4 0.02 0.37
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Other Link Functions for Binary Data

logistic

• The idea that a “latent” continuous variable underlies an observed 
binary response also appears in a “Probit Regression” model:

➢ A probit link, such that the linear model predicts a different transformed 𝒚𝒊: 
     Probit 𝑦𝑖 = 1 = Φ−1[𝑝 𝑦𝑖 = 1 ] = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 

▪ Φ = standard normal cumulative distribution function, so the link-transformed 𝒚𝒊 
is the z-value that corresponds to the location on standard normal curve below 
which the conditional mean probability is found (i.e., z-value for area to the left)

▪ Requires integration to inverse link from probits to predicted probabilities

➢ Same Bernoulli distribution for the conditional binary outcomes, in which 
residual variance cannot be separately estimated (so no 𝑒𝑖 in the model)

▪ Model scale: Probit can also predict “latent” response:   𝒚𝒊
∗ = −𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 + 𝒆𝒊

∗

▪ But Probit says 𝒆𝒊
∗~ 𝑵𝒐𝒓𝒎𝒂𝒍 𝟎, 𝝈𝒆∗

𝟐 = 1.00 , whereas logit 𝝈𝒆∗
𝟐 =

𝝅𝟐

𝟑
= 3.29 

(~3.29 is the variance of a logistic distribution for binary outcomes instead)

➢ So given this difference in variance, probit coefficients are on a different 
scale than logit coefficients, and so their estimates won’t match… however…

𝐠 ⋅  𝐥𝐢𝐧𝐤
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https://en.wikipedia.org/wiki/Logistic_distribution


Left image: exact source now unknown, but I think it was from Don Hedeker

Right image: borrowed from Jonathan Templin 
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Probit vs. Logit: Should you care? Pry not.

• Other fun facts about probit:

➢ Probit = “ogive” in the Item Response Theory (IRT) world

➢ Probit has no odds ratios (because it’s not made from odds)

➢ Probit is the only option in models using limited-information estimation!

• Both logit and probit assume symmetry of the curve, but there are 
other asymmetric options: log-log and complementary log-log

Probit 𝝈𝒆∗
𝟐 = 1.00

(SD=1)

Logit 

𝝈𝒆∗
𝟐 = 3.29

(SD=1.8)

Rescale to equate 

linked outcomes: 

𝜷𝒍𝒐𝒈𝒊𝒕 =

𝜷𝒑𝒓𝒐𝒃𝒊𝒕 ∗

𝟏. 𝟕(. 𝟎𝟏)

You’d think it would 

be 1.8 to rescale, 

but it’s actually 1.7…

𝑦𝑖 = 0

Threshold

P
ro

b
a
b

il
it

y
 𝑦

𝑖

𝑦𝑖 = 1

Link-Transformed 𝑦𝑖
∗ 

Link-Transformed 𝑦𝑖
∗ 

16    

P
ro

b
a
b

il
it

y
 𝑦

𝑖



SMiP 2024 MLM:  Lecture 2

Too Logit to Quit* https://www.youtube.com/watch?v=HFCv86Olk8E

• The logit is the basis for many other generalized models for 

categorical (ordinal or nominal; IRT “polytomous”) outcomes

• Next we’ll see how 𝐶 possible response categories can be 

predicted using 𝐶 − 1 binary “submodels” whose link functions 

carve up the categories in different ways, in which each binary 

submodel (usually) uses a logit link to predict its outcome

• Types of categorical outcomes:

➢ Definitely ordered categories: “cumulative logit” → ordinal

➢ Maybe ordered categories: “adjacent category logit” (not used much)

➢ Definitely NOT ordered categories: “generalized logit” → nominal 

(or “baseline category logit” or “multinomial regression”

* Starts about 8 minutes into 15-minute video (and MY joke for the last 10+ years!)
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Logit Models for 𝐶 Ordinal Categories
• Known as “cumulative logit” or “proportional odds” model in 

generalized models; known as “graded response model” in IRT

➢ SAS GLIMMIX (LINK=CLOGIT DIST=MULT) or PROC LOGISTIC; 

STATA OLOGIT/GOLOGIT2/GLM; R VGLM family=cumulative(parallel=TRUE)

• Models the probability of lower vs. higher cumulative categories via 

𝐶 − 1 submodels (e.g., if 𝐶 = 4 possible responses of 𝑐 = 0,1,2,3): 

           0 vs. 1,2,3       0,1 vs. 2,3         0,1,2 vs. 3

• In software what the binary submodels predict depends on whether the 

model is predicting DOWN (𝒚𝒊 = 𝟎) or UP (𝒚𝒊 = 𝟏) cumulatively 

• Example predicting UP in an empty model (subscripts=parm, submodel)

• Submodel 1:  𝐿𝑜𝑔𝑖𝑡[𝑝(𝑦𝑖 > 0)] = 𝛽01  → 𝑝 𝑦𝑖 > 0 = 𝑒𝑥𝑝 𝛽01 / 1 + 𝑒𝑥𝑝 𝛽01

• Submodel 2:  𝐿𝑜𝑔𝑖𝑡[𝑝(𝑦𝑖 > 1)] = 𝛽02  → 𝑝 𝑦𝑖 > 1 = 𝑒𝑥𝑝 𝛽02 / 1 + 𝑒𝑥𝑝 𝛽02

• Submodel 3:  𝐿𝑜𝑔𝑖𝑡[𝑝(𝑦𝑖 > 2)] = 𝛽03 → 𝑝 𝑦𝑖 > 2 = 𝑒𝑥𝑝 𝛽03 / 1 + 𝑒𝑥𝑝 𝛽03

Submodel3Submodel2Submodel1
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I’ve named these submodels 
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but each program output will 
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Logit Models for 𝐶 Ordinal Categories
• Models the probability of lower vs. higher cumulative categories via

𝐶 − 1 submodels (e.g., if 𝐶 = 4 possible responses of 𝑐 = 0,1,2,3): 

 0 vs. 1,2,3       0,1 vs. 2,3         0,1,2 vs. 3

• In software, what the binary submodels predict depends on whether the 

model is predicting DOWN (𝒚𝒊 = 𝟎) or UP (𝒚𝒊 = 𝟏) cumulatively 

➢ Start with an empty model to verify which way your program is predicting!

➢ Either way, the model predicts the middle category responses indirectly

• Example if predicting UP with an empty model:

➢ Probability of 0 =       1 – Prob1   

Probability of 1 = Prob1– Prob2

Probability of 2 = Prob2– Prob3

Probability of 3 = Prob3– 0

Submodel3 

→ Prob3

Submodel2 

→ Prob2

Submodel1
→ Prob1

The cumulative submodels that create these 

probabilities are each estimated using all the 

data (good, especially for categories not chosen 

often), but assume order in doing so (may be 

bad or ok, depending on your response format)

Logit[𝑝(𝑦𝑖 > 2)] = 𝛽03    

→ 𝑝 𝑦𝑖 > 2 =
𝑒𝑥𝑝 𝛽03

1+𝑒𝑥𝑝 𝛽03
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Logit Models for 𝐶 Ordinal Categories
• Btw, ordinal models usually use a logit link transformation, but they can 

also use cumulative log-log or cumulative complementary log-log links

• Assume proportional odds: that SLOPES of predictors ARE THE SAME

across binary submodels—for example (subscripts = parm, submodel)

➢ Submodel 1:  𝐿𝑜𝑔𝑖𝑡[𝑝(𝑦𝑖 > 0)] = 𝜷𝟎𝟏 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥1𝑖𝑥2𝑖

➢ Submodel 2:  𝐿𝑜𝑔𝑖𝑡[𝑝(𝑦𝑖 > 1)] = 𝜷𝟎𝟐 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥1𝑖𝑥2𝑖

➢ Submodel 3:  𝐿𝑜𝑔𝑖𝑡[𝑝(𝑦𝑖 > 2)] = 𝜷𝟎𝟑 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥1𝑖𝑥2𝑖

• Proportional odds essentially means no interaction between submodel and 

predictor slope, which greatly reduces the number of estimated parameters

➢ Can be tested and changed to “partial” proportional odds in SAS LOGISTIC, 

STATA GOLOGIT2, and R VGLM (but harder to find in mixed-effects models)

➢ If the proportional odds assumption fails, you can use a nominal model instead

(dummy-coding to create separate outcomes can approximate a nominal model)
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Logit-Based Models for C Categories
• Uses multinomial distribution: e.g., PDF for 𝐶 = 4 categories of 

𝑐 = 0,1,2,3; an observed 𝑦𝑖 = 𝑐; and indicators 𝐼 if 𝑐 = 𝑦𝑖

     𝑓 𝑦𝑖 = 𝑐 = 𝑝𝑖0
𝐼[𝑦𝑖=0]

𝑝𝑖1
𝐼[𝑦𝑖=1]

𝑝𝑖2
𝐼[𝑦𝑖=2]

𝑝𝑖3
𝐼[𝑦𝑖=3]

➢ Maximum likelihood estimation finds the most likely parameters 

for the model to predict the probability of each response through the 

(usually logit or probit) link function; probabilities sum to 1: σ𝑐=1
𝐶 𝑝𝑖𝑐 = 1

• Other models for categorical data that use a multinomial PDF:

➢ Adjacent category logit (IRT “partial credit”): Models probability of 

each next highest category via 𝐶 − 1 submodels (e.g., if 𝐶 = 4): 

 0 vs. 1  1 vs. 2  2 vs. 3

➢ Baseline category logit (nominal or “multinomial”): Models probability of 

reference vs. each other 𝒄 via 𝐶 − 1 submodels  (e.g., if 𝐶 = 4 and 0 = ref): 

 0 vs. 1  0 vs. 2  0 vs. 3

▪ Nominal also assumes “independence of irrelevant alternatives”—that the same fixed 

effects would be found if the possible choices were not the same (empirically testable)

Only 𝑝𝑖𝑐 for response 

𝑦𝑖 = 𝑐 gets used
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From Single-Level to Multilevel…
• Multilevel generalized models have the same 3 parts as 

single-level generalized models:

➢ Alternative conditional distribution for the outcome (e.g., Bernoulli)

➢ Link function to transform bounded conditional mean into unbounded

➢ Linear model that directly predicts the linked conditional mean instead

• But in adding random effects (i.e., additional piles of variance) 
to address dependency in multilevel data:

➢ Piles of variance will appear to be ADDED TO, not EXTRACTED FROM, 
the original residual variance when fixed (e.g., 3.29=logit, 1.00=probit), 
which causes all coefficients to change scale across models

➢ ML estimation is way more difficult because normal random effects + 
not-normal residuals does not have a known distribution like MVN

➢ No such thing as REML for generalized multilevel models with true ML

➢ Pseudo-R2 is not possible for level-1 effects (so use odds ratios instead)
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Empty Two-Level Model for Binary Outcomes

𝑡 = level-1 time, 𝑖 = level-2 individual

this article

• Level 1:   𝑳𝒐𝒈𝒊𝒕 [𝒑(𝒚𝒕𝒊 = 𝟏)] = 𝜷𝟎𝒊 

• Level 2:            𝜷𝟎𝒊 = 𝜸𝟎𝟎 + 𝑼𝟎𝒊

• Composite: 𝑳𝒐𝒈𝒊𝒕 [𝒑(𝒚𝒕𝒊 = 𝟏)]  = 𝜸𝟎𝟎 + 𝑼𝟎𝒊

• 𝝈𝒆
𝟐 residual variance is not estimated → 𝝅𝟐/𝟑 = 𝟑. 𝟐𝟗 in logits

• Logit ICC =
Between

Between+Within
=

𝝉𝑼
𝟐

𝟎

𝝉𝑼
𝟐

𝟎
+ 𝝈𝒆

𝟐 =
𝝉𝑼

𝟐
𝟎

𝝉𝑼
𝟐

𝟎
+ 𝟑.𝟐𝟗

• Can do LRT to see if logit 𝝉𝑼
𝟐

𝟎
> 0; the ICC is problematic to interpret on 

the data scale due to non-constant and not estimated residual variance

• ICC formulas for other outcomes besides binary vary widely

• Probit link replaces residual variance with 1; others use a function of the mean 

when the variance is mean-dependent (e.g., Poisson) – see this article for details

Notice what’s 

NOT in level 1…
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Example Random Slope Model for Binary 

Outcomes using Cluster-MC 𝑾𝑷𝒙𝒕𝒊

• Level 1:  𝑳𝒐𝒈𝒊𝒕 𝒑 𝒚𝒕𝒊 = 𝟏 = 𝜷𝟎𝒊 + 𝜷𝟏𝒊(𝑾𝑷𝒙𝒕𝒊)

• Level 2:      𝜷𝟎𝒊 = 𝜸𝟎𝟎 + 𝜸𝟎𝟏 𝑷𝑴𝒙𝒊 + 𝑼𝟎𝒊

                             𝜷𝟏𝒊 = 𝜸𝟏𝟎 + 𝜸𝟏𝟏 𝑷𝑴𝒙𝒊 + 𝑼𝟏𝒊

• 𝒙𝒕𝒊 = time-varying predictor: 𝑾𝑷𝒙𝒕𝒊 = 𝒙𝒕𝒊 −  ഥ𝒙𝒊; 𝑷𝑴𝒙𝒊 = ഥ𝒙𝒊 − 𝑪𝟐

• 𝜸𝟎𝟏 main effect of 𝑷𝑴𝒙𝒊 will reduce level-2 random intercept variance 𝝉𝑼𝟎

𝟐 ; 
𝜸𝟏𝟏 cross-level interaction of 𝑷𝑴𝒙𝒊* 𝑾𝑷𝒙𝒕𝒊 will reduce level-2 random slope 
variance 𝝉𝑼𝟏

𝟐 for 𝑾𝑷𝒙𝒕𝒊

• 𝝈𝒆
𝟐 residual variance is still not estimated → 𝝅𝟐/𝟑 = 𝟑. 𝟐𝟗, which means 

we cannot use it to make a pseudo-R2 for 𝑾𝑷𝒙𝒕𝒊 (even though that is 
still what its fixed slope is trying to reduce)

• Can test new fixed OR random effects with LRTs (−2ΔLL) when using true ML 
estimation, but LRTs cannot be used with pseudo- or quasi-likelihood 
estimation (model LL values are not on same scale)

• Still use univariate or multivariate Wald test p-values for fixed effects, 
but usually without denominator DF (so 𝑡 → 𝑧 and 𝐹 → 𝜒2)
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Example Random Slope Model for an 

Ordinal Outcome (𝑦𝑡𝑖 = 0, 1, or 2)

Don Hedeker’s slides

• 𝐋𝟏:  𝐋𝐨𝐠𝐢𝐭 𝒑 𝒚𝒕𝒊 > 𝟎 = 𝜷𝟎𝒊𝟏 +  𝜷𝟏𝒊𝟏 
(𝑾𝑷𝒙𝒕𝒊)

        𝐋𝐨𝐠𝐢𝐭 [𝒑(𝒚𝒕𝒊 > 𝟏)] =  𝜷𝟎𝒊𝟐 +  𝜷𝟏𝒊𝟐(𝑾𝑷𝒙𝒕𝒊)

• L2:    𝜷𝟎𝒊𝟏 = 𝜸𝟎𝟎𝟏 + 𝑼𝟎𝒊𝟏 
𝜷𝟏𝒊𝟏 = 𝜸𝟏𝟎𝟏 + 𝑼𝟏𝒊𝟏

              𝜷𝟎𝒊𝟐 = 𝜸𝟎𝟎𝟐 + 𝑼𝟎𝒊𝟐 𝜷𝟏𝒊𝟐 = 𝜸𝟏𝟎𝟐 + 𝑼𝟏𝒊𝟐

• Cumulative logit link defaults to proportional odds → 
𝜸𝟎𝟎𝟏 ≠ 𝜸𝟎𝟎𝟐 but 𝜸𝟏𝟎𝟏 = 𝜸𝟏𝟎𝟐 and 𝑼𝟎𝒊𝟏 = 𝑼𝟎𝒊𝟐 and 𝑼𝟏𝒊𝟏 = 𝑼𝟏𝒊𝟐 

➢ Testable directly using a “partial” proportional odds model in which 
some can be constrained or indirectly via nominal model (all unequal)

➢ 𝝈𝒆
𝟐 residual variance is still not estimated → 𝝅𝟐/𝟑 = 𝟑. 𝟐𝟗 (if link=logit)

• Btw, for nominal models (baseline category link), all 
parameters are separate across submodels by default

➢ For more on ordinal and nominal MLMs, see Don Hedeker’s slides
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Last subscript of 1 

or 2 is for which 

submodel; other 

level-2 fixed effects 

omitted for brevity

https://ssicentral.com/wp-content/uploads/2015/09/Ordinal_Nominal_Long.pdf
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New Interpretation of Fixed Effects
• In general MLMS, the fixed effects are interpreted as the 

“average” effect for the sample, such as in an empty model:

➢ Fixed intercept 𝜸𝟎𝟎 is “mean of individual means”

➢ Random intercept 𝑼𝟎𝒊 is “individual 𝑖 deviation from sample mean”

• What “average” means in generalized MLMs is different, 

because of the use of nonlinear link functions:

➢ e.g., mean of log-transformed(𝑦) ≠ log-transformed mean(𝑦) 

➢ Therefore, the fixed effects are not the “sample average” effect, 

they are the effect for specifically for corresponding 𝑼𝒊 = 𝟎 

▪ So fixed effects are conditional on the random effects

▪ This is called a “unit-specific” or “subject-specific” model

▪ This distinction does not exist when using a normal conditional distribution

▪ Fixed effects can differ when paired with a random effect as a result!
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Comparing Results across Models is Tricky!

Bauer, 2009

• Level-1 fixed effects cannot be compared directly across 

models, because they are not on the same scale! (Bauer, 2009)

• e.g., if residual variance = 3.29 in logit models:

➢ When adding a random intercept variance to an empty model, the 

total variation in the outcome has increased → the fixed effects 

will increase in size because they are unstandardized slopes

➢ Level-1 predictors cannot decrease the level-1 residual variance 

like usual, so all other model estimates must increase to compensate

▪ If 𝑊𝑃𝑥𝑡𝑖 is uncorrelated with other predictors and is a pure level-1 variable 

(ICC ≈ 0), then fixed and 𝑆𝐷(𝑈0𝑖) will increase by same factor

➢ Random effects variances can decrease, so level-2 fixed effects should 

be on the same scale across models given the same level-1 model

0

2

U

mixed fixed

+3.29
γ  ( )

3.29
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There’s (Pry) a Model for That!

28    

• Many kinds of non-normal outcomes can be analyzed with 

generalized MLMs through the magic of ML (or Bayes)

➢ Can be fewer choices in MLM than for single-level models 

(for more info, see PSQF 6270 Generalized Linear Models)

• Two parts: Link function + other conditional distribution

➢ Binary → Logit + Bernoulli

➢ Ordinal or Nominal → Logit + Multinomial

➢ Proportion → Logit + Binomial/Beta-Binomial 

➢ Count → Log + Poisson/Negative Binomial

➢ Censored → Tobit + Normal/Bernoulli 

➢ Skewed Continuous → Log + Log-Normal/Gamma

➢ Bimodal Continuous → Logit + Beta

➢ Zero-Inflated (if and how much) → Logit/Log + Bernoulli/other

https://www.lesahoffman.com/PSQF6270/index.html
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From One to Many Outcomes…
• Most designs have more than one outcome per person…

➢ e.g., multiple outcomes, occasions, items, trials … per person 

➢ Multiple dimensions of sampling → multiple kinds of variability
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Time 2

Time 3

Time 4

Time 1
Between

Person

Within

Person

(Time)

Item 2

Item 3

Item 4

Item 1
Latent

Factor

Residual 

(Error)

“Random Effects” 

in Longitudinal Models

“Latent Traits/Variables” 

in Measurement Models
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4. Random Effects / Latent Variables
• Random effects are for “handling dependency” that arises 

because multiple dimensions of sampling → multiple variances

➢ Occasions within individuals (need 1+ random effect)

➢ Children within classrooms within schools (need 2+ random effects)

➢ aka, multilevel, mixed-effects, or hierarchical linear models

• Latent <traits/factors/variables> are for representing 
“error-free true construct variance” within observed outcomes

➢ Normal outcomes + latent variables = confirmatory FA (CFA; SEM)

➢ Categorical outcomes + latent variables = item response theory (IRT)

➢ See PSQF 6249 for measurement models for multiple kinds of outcomes

• Random effects / latent variables are mechanisms by which:

➢ Make best use of all the data; avoid list-wise deletion of incomplete data

➢ Quantify and predict distinct sources of variation… of whatever kind!
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Nested vs. Crossed Items in Multilevel Designs

• When should items be a separate level-2 random effect? 

➢ Items are clearly nested within persons if the model fixed effects 

explain ALL of the item variation (so no item variation remains)
▪ e.g., via item-specific indicators (CFA, IRT; stay tuned)

▪ e.g., by item design features given only one item per condition

➢ Items are clearly nested within persons if they are endogenous
▪ e.g., autobiographical memories, eye movements, speech utterances

➢ More ambiguous if items are randomly generated per person
▪ If items are truly unique per person, then there are no common items… 

but items are usually constructed systematically

▪ Modeling items as nested (no variance) assumes exchangeability

• When does this matter? When turning experimental 

tasks into instruments in which the outcome is non-

normal, and we want to predict sources of item difficulty
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Latent Variables = Random Effects
• 1PL model predicts accuracy via fixed item effects and 

random person effects (i.e., 𝑛 items are nested in persons)

• “Rasch” version of 1PL model:

➢ Probability ypi = 1 𝛉𝐩) =
exp 𝛉𝐩−𝐛𝐢

1+exp 𝛉𝐩−𝐛𝐢
  

➢ Logit ypi = 1 𝛉𝐩) = 𝛉𝐩 − 𝐛𝐢

▪ 𝐛𝐢 = ability needed for prob = .50 (logit=0)

• 1PL is also a generalized multilevel model (𝒕 = trial):

➢ Logit ytpi = 1 𝐔𝟎𝐩𝟎) = 𝛄𝟎𝟎𝟏𝐈𝟏 + 𝛄𝟎𝟎𝟐𝐈𝟐 + ⋯ + 𝛄𝟎𝟎𝒏𝐈𝒏 + 𝐔𝟎𝐩𝟎

➢ 𝛄𝟎𝟎𝐢 = expected logit when ability = 0

➢ Because item difficulty/easiness is 
perfectly predicted by the 𝑰 indicator 
variables, here items do not need a 
level-2 crossed random effect
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𝐛𝐢 is fixed effect of 

difficulty per item

𝛉𝐩 is random person 

ability (estimated 

variance 𝛕𝛉
𝟐)

𝛄𝟎𝟎𝐢 is fixed effect of 

easiness per item

𝐔𝟎𝐩𝟎 is random person 

ability (estimated 

variance 𝛕𝟎𝐏𝟎
𝟐 )
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Latent Variables = Random Effects

• 1PL model identification:

➢ Logit ypi = 1 𝛉𝐩) = 𝛉𝐩 − 𝐛𝐢

➢ On means side, fix one of these to 0:

▪ One item difficulty, sum of item difficulties, or theta mean

➢ One variance side, fix one of these to 1:

▪ Item discrimination (“Rasch” version) 
or theta variance  (“1PL” version)

• 1PL as Generalized MLM:

➢ Logit ytpi = 1 𝐔𝟎𝐩𝟎) = 𝛄𝟎𝟎𝟏𝐈𝟏 + 𝛄𝟎𝟎𝟐𝐈𝟐 + ⋯ + 𝛄𝟎𝟎𝒏𝐈𝒏 + 𝐔𝟎𝐩𝟎

➢ Will be on the same scale as 1PL model when theta mean 
= 0 and item discrimination is fixed to 1 so that person 
random intercept variance is estimated (“Rasch version”)
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𝐛𝐢 is fixed effect of 

difficulty per item

𝛉𝐩 is random person 

ability (variance 𝛕𝛉
𝟐)

𝛄𝟎𝟎𝐢 is fixed effect of 

easiness per item

𝐔𝐩𝟎 is random person 

ability (variance 𝛕𝟎𝐏𝟎
𝟐 )
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Adding a Linear Model for Difficulty
• 1PL can be extended to predict item difficulty via the LLTM 

(“linear logistic test model” by Fisher in 1970s and 1980s)

• LLTM → 𝑘 item features predict bi; random persons (𝛉𝐩):

➢ Logit ypi = 1 𝛉𝐩) = 𝛉𝐩 − 𝐛𝐢

➢ 𝐛𝐢 = 𝛄𝟎 + 𝛄𝟏𝐗𝟏𝐢 + 𝛄𝟐𝐗𝟐𝐢 + ⋯ + 𝛄𝐤𝐗𝐤𝐢

• LLTM written as a generalized multilevel model:

➢ Logit ytpi = 1 𝐔𝐩𝟎 = 𝛄𝟎𝟎𝟎 + 𝛄𝟎𝟎𝟏𝐗𝟏𝐢 + 𝛄𝟎𝟎𝟐𝐗𝟐𝐢 + ⋯ + 𝛄𝟎𝟎𝐤𝐗𝐤𝐢

                                            + 𝐔𝟎𝐩𝟎

➢ Because there is no random item effect,
the model says that items are still just 
nested within persons—that item difficulty
or easiness is perfectly predicted by the 𝑋 
item features (no item differences remain)

34

Item difficulty =linear model 

of 𝑘 item features (of X*γ fixed 

effects); 𝛉𝐩 is random person 

ability (variance 𝛕𝛉
𝟐)

Item easiness = a linear 

model of 𝑘 item features 

(of X*γ fixed effects); 

𝐔𝟎𝐩𝟎 is random person 

ability (variance 𝛕𝟎𝐏𝟎
𝟐 )
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Example: Measuring Visual Search Ability

35

Rated Item Design Features:

• Visual clutter of the scene

• Relevance of the change to driving

• Brightness of the change

• Change made to legible sign

• 155 persons, 36 items retained, 

DV = accuracy (RT last time)

cycle continues until response for max of 45 sec

Blank

80 ms

A

280 ms

Blank

80 ms

Blank

80 ms

Blank

80 ms

A

280 ms

A’

280 ms

A’

280 ms

Change detection 

task using the 

“flicker paradigm”

A

A’
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Proof of Concept: Random Items Matters

36    

Item re-analysis predicting accuracy in dissertation 

data using SAS PROC GLIMMIX (Laplace estimation)

Est SE p  < Est SE p  <

Intercept 1.082 0.072 .0001 1.348 0.260 .0001

Clutter -0.268 0.055 .0001 -0.324 0.242 .1809

Relevant 0.220 0.099 .0266 0.037 0.426 .9306

Brightness 0.474 0.113 .0001 0.790 0.499 .1136

Legible Sign 0.662 0.082 .0001 0.739 0.337 .0283

Effect
Items Treated as Fixed Items Treated as Random

• Btw, the explanatory IRT models considered here do not have 
item-specific discrimination (= slope of prediction by trait)

• Item differences in discrimination can be modeled using fixed effects 
(i.e., a “2PL model” or separate factor loadings) or using random effects 
→ variance in discrimination could* be predicted by item features!

➢ *Not in standard MLM software, though (no estimated slopes*random effects)
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Putting It All Together…
• Experimental tasks can become psychometric instruments via 

explanatory IRT (generalized multilevel) models in which 

items and persons have crossed random effects at level 2

Logit(ytpi = 1) = γ000 + γ001X1i + γ002X2i + ⋯ + 𝐔𝟎𝐩𝟎 + 𝐔𝟎𝟎𝐢

➢ 𝐔𝟎𝐩𝟎 is person ability with random (unpredicted) variance of 𝛕𝟎𝐏𝟎
𝟐

➢ 𝐔𝟎𝟎𝐢 is item easiness is predicted from a linear model of the 

X item features, with random (leftover) variance of 𝛕𝟎𝟎𝐈
𝟐  

➢ Can add person predictors to explain 𝛕𝟎𝐏𝟎
𝟐

➢ Can examine random effects across persons of X item features 

(i.e., differential susceptibility to item manipulations)

• Let’s try to estimate some of these models!
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