Multilevel Models for Subjects Crossed with Items: Motivation and Examples

Topics:

- > The experimental psychologist's analytic toolbox
- > Examples of crossed random effects models:
 - 1: Psycholinguistic study (subjects by words)—see article & 945 Ex. 3a
 - 2: Visual search study (subjects by scenes)—chapter 12
 - 3: Eye tracking study (subjects by scenes)—see article
- Example of nested model:
 - 4: Tracking and talking (speech within subjects)—see article

Analytic Toolbox of the Experimental Psychologist

- Our friend, analysis of variance (ANOVA)
 - Between-group (aka between-subject, independent IV)
 - Within-group (aka within-subject, dependent, repeated measures IV)
 - > Split-plot (aka mixed design of between- and within-group IVs)
- Expandable to include:
 - multiple IVs (factorial ANOVA)
 - main effects of continuous covariates (ANCOVA)
 - multiple outcomes (MANOVA/MANCOVA)

RM ANOVA works well when...

- Experimental stimuli are controlled and exchangeable
 - ➤ Controlled → Constructed, not sampled from a population
 - Exchangeable → Stimuli vary only in dimensions of interest
 - ...What to do with non-exchangeable stimuli (e.g., words, scenes)?
- Experimental manipulations create discrete conditions
 - > e.g., set size of 3 vs. 6 vs. 9 items
 - > e.g., response compatible vs. incompatible distractors
 - > ...What to do with *continuous* item predictors (e.g., time, salience)?
- One has complete data
 - > e.g., if outcome is RT and accuracy is near ceiling
 - > e.g., if responses are missing for no systematic reason
 - > ...What if data are not missing completely at random (e.g., inaccuracy)?

The Curse of Non-Exchangeable Items

Jim Bovaird, University of Nebraska-Lincoln

Larry Locker, Georgia Southern University

- Psycholinguistic research (items are words and non-words)
 - Common subjects, common items designs
 - Contentious fights with reviewers about adequacy of experimental control when using real words as stimuli
 - Long history of debate as to how data should be analyzed: F1 ANOVA, F2 ANOVA, or both?

Example 1: Overview of Psycholinguistic Study Design

- Word Recognition Tasks (e.g., Lexical Decision)
 - Word lists are constructed based on targeted dimensions while controlling for other relevant dimensions
 - Outcome = response time to decide if each stimulus is a word or non-word (in which accuracy is usually near ceiling)
- Tests of effects of experimental treatment are typically conducted with the subject as the unit of analysis...
 - > Average the responses over words within conditions
 - Contentious fights with reviewers about adequacy of experimental control when using real words as stimuli
 - Long history of debate as to how words as experimental stimuli should be analyzed... F₁ ANOVA or F₂ ANOVA (or both)?
 - F₁ only creates a "Language-as-Fixed-Effects Fallacy" (Clark, 1973)

ANOVAs on Summary Data

Original Data per Subject

	B1	B2
A1	Item 001 Item 002 Item 100	Item 101 Item 102 Item 200
A2	Item 201 Item 202 Item 300	Item 301 Item 302 Item 400

 $RT_i = \gamma_0 + \gamma_1 A_i + \gamma_2 B_i + \gamma_3 A_i B_i + e_i$

Item 400

Subject Summary Data

	B1	B2
A1	Mean (A1, B1)	Mean (A1, B2)
A2	Mean (A2, B1)	Mean (A2, B2)

Item Summary Data

"F1" Within-Subjects ANOVA on N subjects:

 $RT_{cs} = \gamma_0 + \gamma_1 A_c + \gamma_2 B_c + \gamma_3 A_c B_c + U_{0s} + e_{cs}$

	B1				
A1, B1	Item 001 = Mean(Subject 1, Subject 2, Subject N) Item 002 = Mean(Subject 1, Subject 2, Subject N) Item 100				
A1, B2	Item 101 = Mean(Subject 1, Subject 2, Subject <i>N</i>) Item 102 = Mean(Subject 1, Subject 2, Subject <i>N</i>) Item 200				
A2, B1	Item 201 = Mean(Subject 1, Subject 2, Subject <i>N</i>) Item 202 = Mean(Subject 1, Subject 2, Subject <i>N</i>) Item 300				
A2, B2	Item 301 = Mean(Subject 1, Subject 2, Subject <i>N</i>) Item 302 = Mean(Subject 1, Subject 2, Subject <i>N</i>) Item 400				

Choosing Amongst ANOVA Models

- F1 Within-Subjects ANOVA on subject summary data:
 - > Within-condition item variability is gone, so items assumed fixed
- F2 Between-Items ANOVA on item summary data:
 - > Within-item *subject* variability is gone, so subjects assumed fixed
- Historical proposed ANOVA-based resolutions:
 - F' → quasi-F test with random effects for both subjects and items (Clark, 1973), but requires complete data (uses least squares)
 - Min F' → lower-bound of F' derived from F1 and F2 results, which does not require complete data, but is too conservative
 - F1 × F2 criterion → effects are only "real" if they are significant in both F1 and F2 models (aka, death knell for psycholinguists)

> But neither model is complete (two wrongs don't make a right)...

Sources of Variance (Clark, 1973) t = #conditions, i = #items, s = #subjects

Label		DF	Expected Mean Square	
Т	Treatments (t)	t-1	$\sigma_{e}^{2} + \sigma_{S\times I}^{2} + i\sigma_{T\times S}^{2} + \underline{\qquad} + s\sigma_{I}^{2} + is\sigma_{T}^{2}$	
I w T	Items (i) within Treatments	t(i-1)	$\sigma_{e}^{2} + \sigma_{S \times I}^{2} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + s\sigma_{I}^{2} + \underline{\hspace{1cm}}$	
S	Subjects (s)	s-1	$\sigma_{e}^{2} + \sigma_{S\times I}^{2} + \underline{\qquad} + t\sigma_{S}^{2} + \underline{\qquad} + \underline{\qquad}$	
$T \times S$	Treatments by Subjects	(t-1)(s-1)	$\sigma_{e}^{2} + \sigma_{S\times I}^{2} + i\sigma_{T\times S}^{2} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad}$	
S × I w T	Subjects by Items within Treatments	t(i-1)(s-1)	$\sigma_{e}^{2} + \sigma_{S \times I}^{2} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad}$	

Effect of Treatment via F₁ANOVA

T numerator should differ from T×S denominator by 1 term

Label		DF	Expected Mean Square
Т	Treatments (t)	t-1	$\sigma_{e}^{2} + \sigma_{S\times I}^{2} + i\sigma_{T\times S}^{2} + \underline{\hspace{1cm}} + s\sigma_{I}^{2} + is\sigma_{T}^{2}$
IwT	Items (i) within Treatments	t(i-1)	$\sigma_{e}^{2} + \sigma_{S \times I}^{2} + \underline{\qquad} + \underline{\qquad} + s\sigma_{I}^{2} + \underline{\qquad}$
S	Subjects (s)	s-1	$\sigma_{\rm e}^2 + \sigma_{\rm S \times I}^2 + \underline{\hspace{1cm}} + t\sigma_{\rm S}^2 + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$
$T \times S$	Treatments by Subjects	(t-1)(s-1)	$\sigma_{e}^{2} + \sigma_{S \times I}^{2} + i\sigma_{T \times S}^{2} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad}$
S × I w T	Subjects by Items within Treatments	t(i-1)(s-1)	$\sigma_{\rm e}^2 + \sigma_{\rm S \times I}^2 + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$

Effect of Treatment via F₂ANOVA

T numerator should differ from $I \times T$ denominator by 1 term

Label		DF	Expected Mean Square
Т	Treatments (t)	t-1	$\sigma_{e}^{2} + \sigma_{S\times I}^{2} + \sigma_{T\times S}^{2} + \dots + s\sigma_{I}^{2} + \sigma_{T}^{2}$
I w T	Items (i) within Treatments	t(i-1)	$\sigma_{\rm e}^2 + \sigma_{\rm S \times I}^2 + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + s\sigma_{\rm I}^2 + \underline{\hspace{1cm}}$
S	Subjects (s)	s-1	$\sigma_{e}^{2} + \sigma_{S\times I}^{2} + \underline{\qquad} + t\sigma_{S}^{2} + \underline{\qquad} + \underline{\qquad}$
$T \times S$	Treatments by Subjects	(t-1)(s-1)	$\sigma_{e}^{2} + \sigma_{S \times I}^{2} + i\sigma_{T \times S}^{2} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad}$
S × I w T	Subjects by Items within Treatments	t(i-1)(s-1)	$\sigma_{\rm e}^2 + \sigma_{\rm S \times I}^2 + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$

Simultaneous Quasi-F Ratio (F')

• F' was proposed by Clark (1973) as a quasi-F test that treats both items and subjects as random factors

$$\begin{split} F'\Big(df_{num},df_{den}\Big) &= \frac{MS_T + MS_{SxI}}{MS_{TxS} + MS_I} \\ \text{where } df_{num} &= \frac{\Big(MS_T + MS_{SxI}\Big)^2}{\frac{MS_T}{df_T} + \frac{MS_{SxI}}{df_{SxI}}} \text{ and } df_{den} = \frac{\Big(MS_{TxS} + MS_I\Big)^2}{\frac{MS_{TxS}}{df_{TxS}} + \frac{MS_I}{df_I}} \\ F'\Big(df_{num},df_{den}\Big) &= \frac{\Big(2*\sigma_e^2\Big) + \Big(2*\sigma_{SxI}^2\Big) + \Big(\#I*\sigma_{TxS}^2\Big) + \Big(\#S*\sigma_I^2\Big) + \Big(\#I*\#S*\sigma_T^2\Big)}{\Big(2*\sigma_e^2\Big) + \Big(2*\sigma_{SxI}^2\Big) + \Big(\#I*\sigma_{TxS}^2\Big) + \Big(\#S*\sigma_I^2\Big)} \end{split}$$

- Numerator then exceeds the denominator by exactly the treatment variance as desired... except it requires complete data given that it relies on ordinary least squares
 - > Not feasible in most real-world experiments

Minimum of Quasi-F Ratio (Min F')

• Min F' was developed to be used from F_1 and F_2 results:

min F'(df_{num},df_{den}) =
$$\frac{MS_T}{MS_{TxS} + MS_I} = \frac{F_1 * F_2}{F_1 + F_2}$$

- But given that Min F' is overly conservative, having to show significance by both models is often required instead:
 - > the F₁ by F₂ criterion... but two wrongs don't make a right
- Wouldn't it be nice if we had some way to treat subjects and items as the random effects they actually are???
 - > And to assess the extent to which items are actually exchangeable?
 - > And that all the extraneous item variables were adequately controlled?

Multilevel models to the rescue! ... maybe?

Multilevel Model (MLM) Word Salad

- MLM is the same as other terms you have heard of:
 - Linear Mixed-Effects Model (fixed + random effects, of which intercepts and slopes are specific kinds of effects)
 - Random Coefficients Model (because coefficients also = effects)
 - Hierarchical Linear Model (not same as hierarchical regression)
- Special cases of MLM:
 - Random Effects ANOVA or Repeated Measures ANOVA
 - (Latent) Growth Curve Model (where "Latent" implies SEM software)
 - Btw, most MLMs can be equivalently estimated as single-level SEMS
 - Within-Person Fluctuation Model (e.g., for EMA or daily diary data)
 - See also "dynamic" SEM or multilevel SEM (even without measurement models!)
 - Clustered/Nested Observations Model (e.g., for kids in schools)
 - If followed over time in same group, is "clustered longitudinal model"
 - Cross-Classified Models (e.g., teacher "value-added" models)
 - Psychometric Models (e.g., factor analysis, item response theory, SEM)

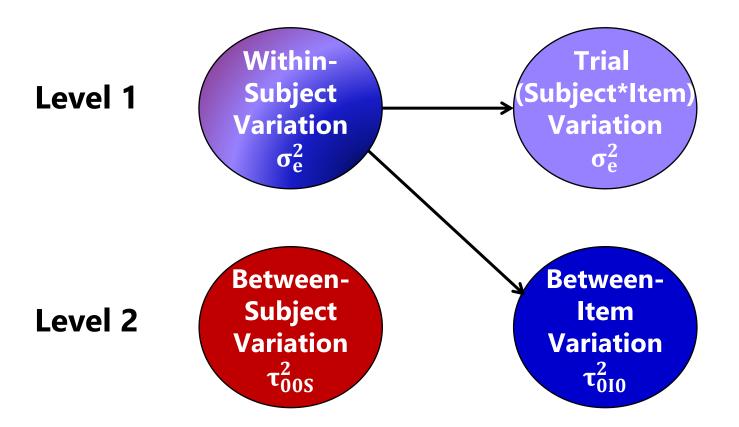
Multilevel Models to the Rescue?

Original Data per Subject

	B1	B2
A1	Item 001 Item 002	Item 101 Item 102
	Item 100	Item 200
Α2	Item 201 Item 202	Item 301 Item 302
\ <u>\</u>	 Item 300	 Item 400

Pros:

- Use all original data, not summaries
- Responses can be missing at random
- Can include continuous predictors


Cons:

Is still wrong (is ~F1 ANOVA)

Level 1:
$$y_{is} = \beta_{0s} + \beta_{1s}A_{is} + \beta_{2s}B_{is} + \beta_{3s}A_{is}B_{is} + e_{is}$$

Level 2:
$$\beta_{0s} = \gamma_{00} + U_{0s}$$

 $\beta_{1s} = \gamma_{10}$
 $\beta_{2s} = \gamma_{20}$
 $\beta_{3s} = \gamma_{30}$

Multilevel Models to the Rescue?

Empty Means, Crossed Random Effects Models

Residual-only model:

- $> RT_{tis} = \gamma_{000} + e_{tis}$
- Assumes no dependency (correlation) of trials from the same subjects or the same items

Random person (or "subject") intercept:

- > RT_{tis} = γ_{000} + U_{00s} + e_{tis}
- Includes systematic mean differences between subjects (which allows a correlation of trials from the same subject)

Random person and item intercepts:

- $> RT_{tis} = \gamma_{000} + U_{00s} + U_{0i0} + e_{tis}$
- Also includes systematic mean differences between items (which allows a correlation of trials from the same item, too)

A Better Way of (Multilevel) Life

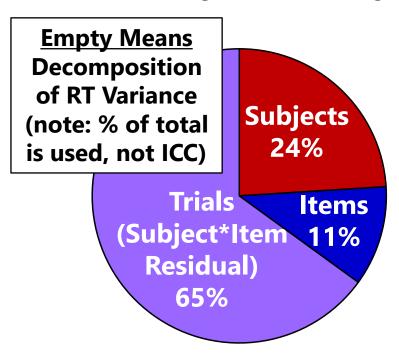
 $\begin{array}{c} \text{Between-}\\ \text{Subject}\\ \text{Variation}\\ \text{L2}\ \tau_{00S}^2 \end{array}$

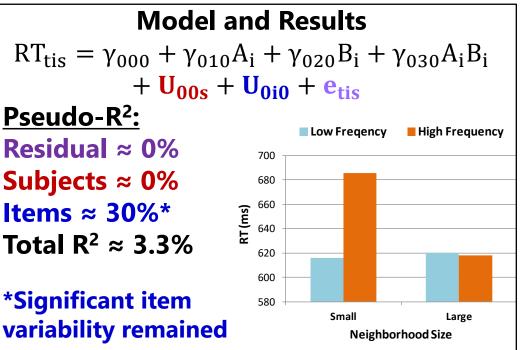
 $\begin{array}{c} \text{Between-} \\ \text{Item} \\ \text{Variation} \\ \text{L2} \ \tau_{010}^2 \end{array}$

Trial (Subject*Item) Variation σ_e^2

Random effects over subjects for item or trial predictors can also be tested and predicted

· Multilevel Model with Crossed Random Effects:


$$\begin{array}{l} RT_{tis} = \gamma_{000} + \gamma_{010}A_i + \gamma_{020}B_i + \gamma_{030}A_iB_i \\ + U_{00s} + U_{0i0} + e_{tis} \end{array} \begin{array}{|ll} \textit{t trial} \\ \textit{i item} \\ \textit{s subject} \end{array}$$


- Both subjects and items as random effects:
 - > Subject predictors explain between-subject mean variation: τ_{00S}^2
 - > Item predictors explain between-item mean variation: τ_{010}^2
 - > Trial predictors explain trial-specific residual variation: σ_e^2

Example 1: Psycholinguistic Study

(Locker, Hoffman, & Bovaird, 2007)

- Crossed design: 38 subjects by 39 items (words or nonwords)
- Lexical decision task: response time (RT) to decide if word or nonword
- 2 word-specific predictors of interest:
 - A: Low/High Phonological Neighborhood Frequency
 - B: Small/Large Semantic Neighborhood Size

Tests of Fixed Effects by Model

	A: Frequency	B: Size	A*B: Interaction
	Marginal Main	Marginal Main	of Frequency
	Effect	Effect	by Size
F ₁ Subjects	F (1,37) = 16.1	F (1,37) = 14.9	F (1,37) = 38.2
ANOVA	p = .0003	p = .0004	p < .0001
F ₂ Words	F (1,35) = 5.3	F (1,35) = 4.5	F (1,35) = 5.7
ANOVA	p = .0278	p = .0415	p = .0225
F' min	F(1,56) = 4.0	F (1,55) = 3.5	F(1,45) = 5.0
(via ANOVA)	p = .0530	p = .0710	p = .0310
Crossed MLM (via REML)	F (1,32) = 5.4	F (1,32) = 4.6	F (1,32) = 6.0
	p = .0272	p = .0393	p = .0199

Tests of Fixed Effects by Model

	A: Frequency	B: Size	A*B: Interaction
	Marginal Main	Marginal Main	of Frequency
	Effect	Effect	by Size
F ₁ Subjects	F (1,37) = 16.1	F (1,37) = 14.9	F (1,37) = 38.2
ANOVA	p = .0003	p = .0004	p < .0001
F ₂ Words	F (1,35) = 5.3	F (1,35) = 4.5	F (1,35) = 5.7
ANOVA	p = .0278	p = .0415	p = .0225
F' min	F(1,56) = 4.0	F (1,55) = 3.5	F(1,45) = 5.0
(via ANOVA)	p = .0530	p = .0710	p = .0310
Crossed MLM (via REML)	F (1,32) = 5.4	F (1,32) = 4.6	F (1,32) = 6.0
	p = .0272	p = .0393	p = .0199

Tests of Fixed Effects by Model

	A: Frequency	B: Size	A*B: Interaction
	Marginal Main	Marginal Main	of Frequency
	Effect	Effect	by Size
F ₁ Subjects	F (1,37) = 16.1	F (1,37) = 14.9	F (1,37) = 38.2
ANOVA	p = .0003	p = .0004	p < .0001
F ₂ Words	F (1,35) = 5.3	F (1,35) = 4.5	F (1,35) = 5.7
ANOVA	p = .0278	p = .0415	p = .0225
F' min	F(1,56) = 4.0	F (1,55) = 3.5	F (1,45) = 5.0
(via ANOVA)	p = .0530	p = .0710	p = .0310
Crossed MLM	F (1,32) = 5.4	F (1,32) = 4.6	F (1,32) = 6.0
(via REML)	p = .0272	p = .0393	p = .0199

Ch. 12 Simulation: Type 1 Error Rates

Cond	lition		Models				
Item Variance	Subject Variance	1: Both Random Effects	2: Random Subjects Only	3: Random Items Only	4: No Random Effects	5: F1 Subjects ANOVA	6: F2 Item ANOVA
Item Effect:							
2	2	0.03	0.09	0.03	0.09	0.09	0.03
2	10	0.05	0.14	0.05	0.12	0.15	0.05
10	2	0.04	0.32	0.04	0.31	0.32	0.04
10	10	0.05	0.31	0.05	0.29	0.33	0.05
Subject Ef	fect:						
2	2	0.04	0.04	0.12	0.11	0.04	0.12
2	10	0.05	0.05	0.34	0.34	0.05	0.36
10	2	0.04	0.03	0.12	0.09	0.03	0.12
10	10	0.06	0.06	0.34	0.31	0.05	0.37

Model Items as Fixed → Wrong Item Effect

Cond	lition		Models				
Item Variance	Subject Variance	1: Both Random Effects	2: Random Subjects Only	3: Random Items Only	4: No Random Effects	5: F1 Subjects ANOVA	6: F2 Item ANOVA
Item Effect:							
2	2	0.03	0.09	0.03	0.09	0.09	0.03
2	10	0.05	0.14	0.05	0.12	0.15	0.05
10	2	0.04	0.32	0.04	0.31	0.32	0.04
10	10	0.05	0.31	0.05	0.29	0.33	0.05
Subject Ef	fect:						
2	2	0.04	0.04	0.12	0.11	0.04	0.12
2	10	0.05	0.05	0.34	0.34	0.05	0.36
10	2	0.04	0.03	0.12	0.09	0.03	0.12
10	10	0.06	0.06	0.34	0.31	0.05	0.37

Model Subjects as Fixed → Wrong Subject Effect

Condition		Models					
Item Variance	Subject Variance	1: Both Random Effects	2: Random Subjects Only	3: Random Items Only	4: No Random Effects	5: F1 Subjects ANOVA	6: F2 Item ANOVA
Item Effect:							
2	2	0.03	0.09	0.03	0.09	0.09	0.03
2	10	0.05	0.14	0.05	0.12	0.15	0.05
10	2	0.04	0.32	0.04	0.31	0.32	0.04
10	10	0.05	0.31	0.05	0.29	0.33	0.05
Subject Effect:							
2	2	0.04	0.04	0.12	0.11	0.04	0.12
2	10	0.05	0.05	0.34	0.34	0.05	0.36
10	2	0.04	0.03	0.12	0.09	0.03	0.12
10	10	0.06	0.06	0.34	0.31	0.05	0.37

Example 1: Summary

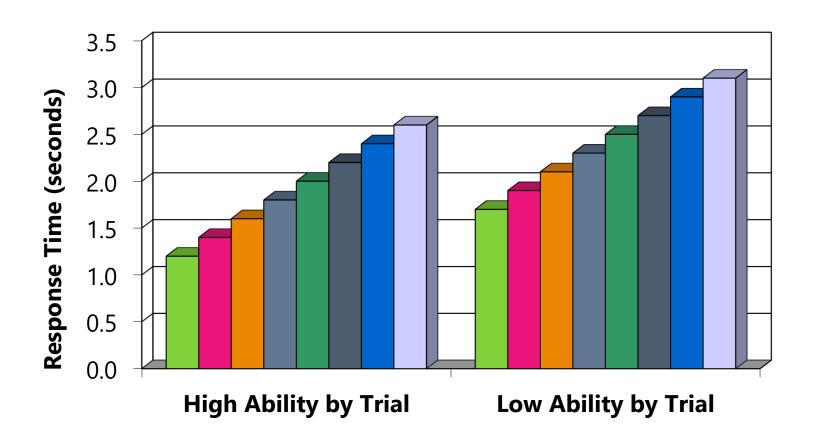
- Although the $F_1 \times F_2$ criterion approach remains the current standard, its shortcomings are well known
 - > F₁ ignores systematic variation across items
 - > F₂ ignores systematic variation across subjects
 - Neither provides an accurate test of the effects of interest while considering all the relevant variation in response time
- Crossed random effects models may provide a tenable alternative with additional analytic flexibility...
 ...as illustrated by the next example...

Example 2: Visual Search for Change (Hoffman & Rovine, 2007; Hoffman ch. 12)

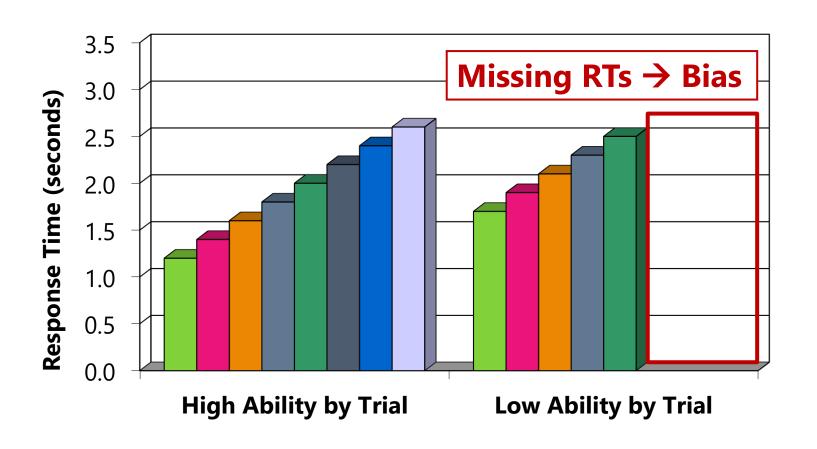
- Outcome (DV)
 - Natural Log of RT to detect a change (up to 60 seconds)
 - > 51 out of 80 natural scenes with > 90% accuracy
- Between-Subjects IV
 - \rightarrow Age: Younger (n = 96) vs. Older (n = 57) Adults
- Within-Subjects IVs
 - Change Meaningfulness to Driving (Low vs. High)
 - Change Salience (Low vs. High)
- Original Analysis Plan
 - > 2 \times 2 \times 2 mixed effects ANOVA on response time

Analysis Plan, Reconsidered Issue #1: Systematic Item Differences

Can you find the change?


- Collapsing across scenes (as items) into condition means ignores systematic differences between scenes
- Treats items as fixed effects → F₁ ANOVA problem
 - > Items will still vary in difficulty due to uncontrolled factors
 - > Effect sizes may be inflated if that variability is not included

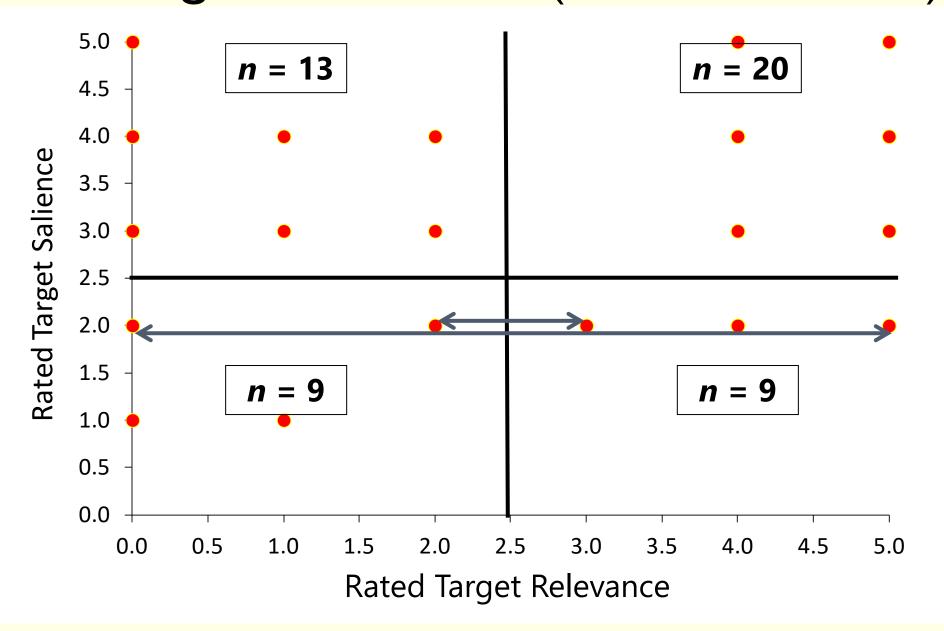
 ANOVA requires complete data to model variation across subjects and items simultaneously...


Analysis Plan, Reconsidered Issue #2: Missing RTs for Incorrect Trials

- Any changes not detected within 60 sec were "inaccurate"
- Only items with > 90% accuracy were included, but...
- RTs are more likely to be missing for difficult items
 - Downwardly biased condition mean RTs
 - > Biased effects of predictor variables related to missingness
 - > Loss of power due to listwise deletion
- ANOVA assumes RTs are missing completely at random, but an assumption of missing at random is more tenable
 - ➤ Missing at Random → probability of missingness is unrelated to unobserved outcome after predictors and observed responses are included in the model

Original RTs Across Trials by Ability

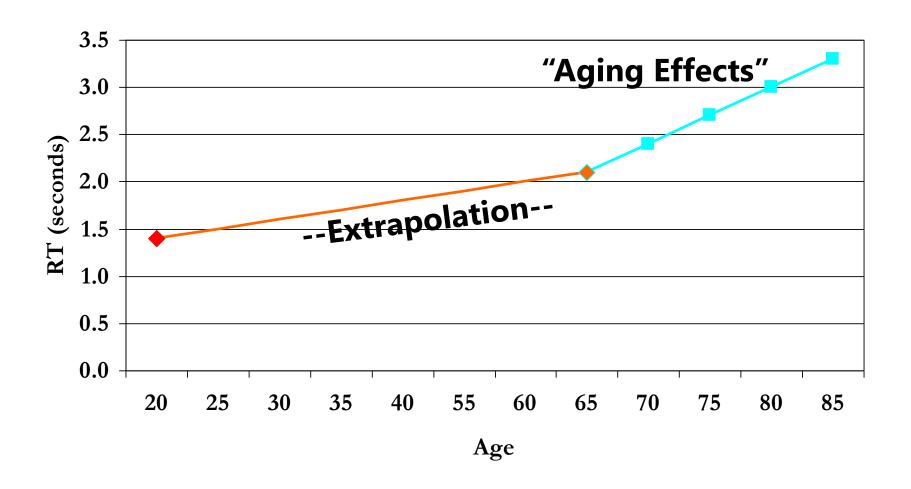
Biased Condition Mean RT

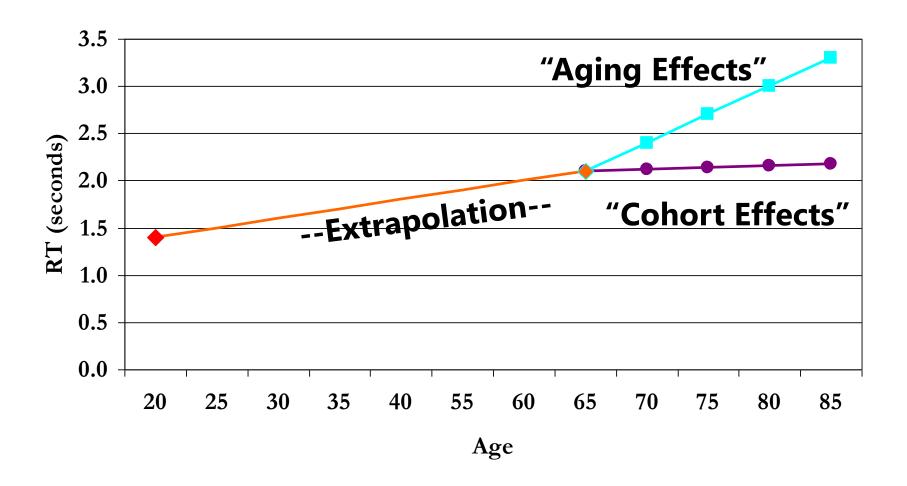


Analysis Plan, Reconsidered Issue #3: Effects of Item Predictors

- 51 scenes varied in change relevance and salience
- Relevance and salience were separately rated for each scene on a continuous scale of 0–5
 - \rightarrow Relevance and salience r = .22
 - Median splits formed categories of "low" & "high"
 - Uneven number of scenes per "condition" by design (and because of timed-out trials)

 Predictors of meaning and salience should be treated as continuous, which is problematic with an ANOVA


Creating "Conditions" $(r = .22 \rightarrow r \approx 0)$


Analysis Plan, Reconsidered Issue #4: Age Differences in Means

- "Younger" and "Older" adults were sampled, but...
 - Much more variability in age in the older group
 - 18–32 years (mostly 18–21) vs. 65–86 years
 - > Age is not a strict dichotomy:
 - Including a single mean age group difference is not adequate
 - Separating "young-old" from "old-old" doesn't really help, either
- Two effects of age are needed:
 - → "Age Group" → difference between young and old
 - > "Years over 65" → slope of age in the older group
 - > This is a piecewise (spline) model of age!

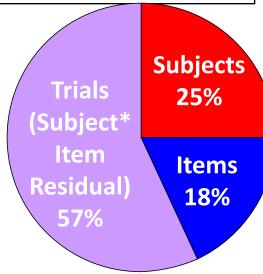
Piecewise (Semi-Continuous) Effects of Age on RT

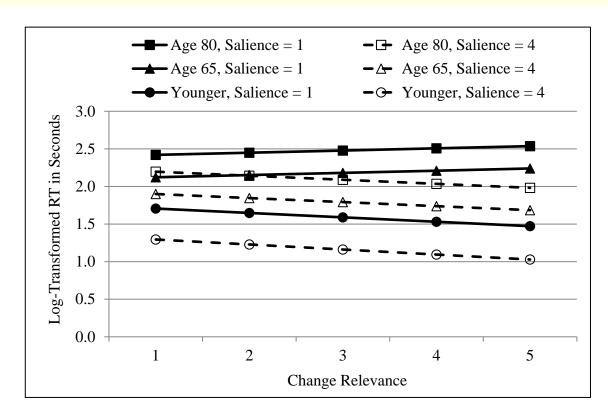
Piecewise (Semi-Continuous) Effects of Age on RT

Analysis Plan, Reconsidered Issue #5: Age Differences in Variances

- In addition to modeling differences in the means by age, the variances are likely to differ by age as well:
 - Older adults are likely to be more different from each other than are younger adults
 - Greater between-person variation in older group
 - Older adults are likely to be more variable across trials than are younger adults
 - Greater within-person variation in older group

 The model needs to accommodate heterogeneity of variance across age groups at multiple analysis levels


Analysis Model, Reconsidered

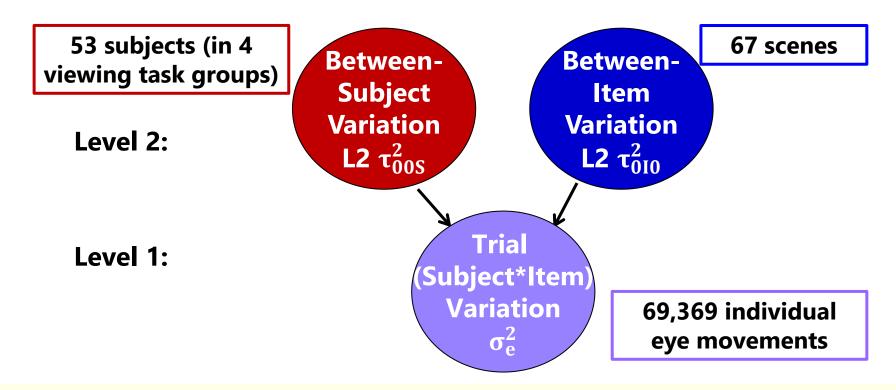

- Scene predictors of relevance and salience should be modeled as continuous; the effect of age should be semi-continuous.
 - > MLM allows categorical or continuous predictors at any level.
- RTs are not missing completely at random.
 - > MLM only assumes missing at random.
- Systematic differences between scenes should be included as a component of overall variance in RT.
 - > MLM allows crossed random effects of subjects and items.
- Magnitude of variation between persons and within-persons (between trials) should be allowed to differ by age group.

> MLM allows for heterogeneous variances by group at any level.

Example #2: Final Model

Empty Means Model Decomposition of RT Variance (note: % of total is used, not ICC)

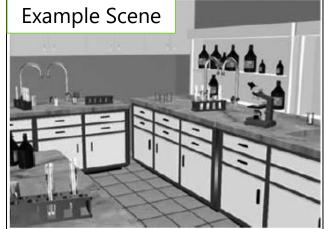
Final model had random subject intercepts and salience slopes, with separate **G** and **R** matrices per age group


```
\begin{split} RT_{tis} &= \gamma_{000} + \gamma_{010} \left( Re \, levance_i - 3 \right) + \gamma_{020} \left( Salience_i - 3 \right) + \gamma_{030} \left( Re \, levance_i - 3 \right) \left( Salience_i - 3 \right) \\ &+ \gamma_{001} \left( Older Group_s \right) + \gamma_{002} \left( Years Over 65_s \right) \\ &+ \gamma_{011} \left( Older Group_s \right) \left( Re \, levance_i - 3 \right) + \gamma_{021} \left( Older Group_s \right) \left( Salience_i - 3 \right) \\ &+ \gamma_{031} \left( Older Group_s \right) \left( Re \, levance_i - 3 \right) \left( Salience_i - 3 \right) + U_{00s} + U_{02s} \left( Salience_i - 3 \right) + U_{0i0} + e_{tis} \end{split}
```

Example #3: Eye Tracking (Mills et al., 2011)

- Does change over time in eye movements depend on the purpose of looking at a scene?
 - > DVs: Fixation duration, saccadic amplitude
 - > Each of the 53 subjects viewed the same 67 scenes for 6 sec
 - > 4 between-subject viewing groups:
 - Free-view, Memorize, Rate Pleasantness, Search for n/z
- Original analysis: Mixed-effects ANOVA
 - > Between-subjects task by chopped-up viewing time
 - Average over scenes; average within 20 "time" 500 msec conditions

Example #3: Eye Tracking

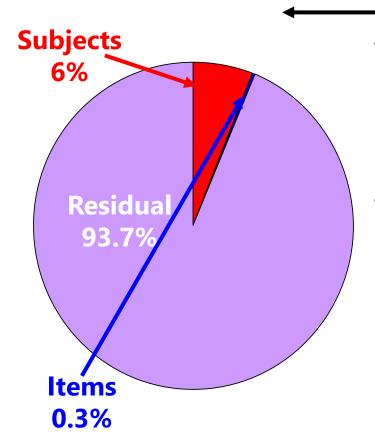

- New analysis: Growth curve modeling of eye movements!
 - Individual eye movements nested within scenes and within subjects
 - Scenes (items) and subjects are crossed random effects
 - Subject predictor = which viewing task they did, no scene predictors
 - Level-1 predictor = viewing time (with a random slope over subjects)

Example #3: Eye Tracking

Fixation duration changes during scene viewing based on goals

UNL Psychology
Program: Visual
Attention, Memory,
and Perception Lab
Left: Mark Mills

eft: Mark Mills and Eye Tracker


Example #3: Eye Tracking

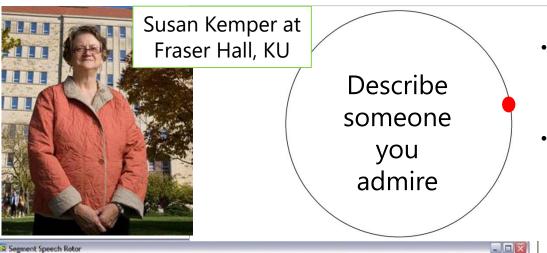
Empty Means Model
Decomposition of Fixation
Duration Variance (note: %
of total is used, not ICC)

• Empty means models:

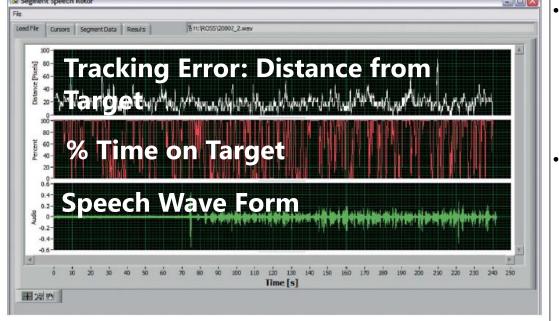
Residual variance only

+ Subject, + item random intercepts

Unconditional models:


- + Linear and quadratic fixed time slopes
- + Random linear time slope over subjects (could be random over items, too)

Conditional models for task effects:


- ➤ Main effect of viewing task \rightarrow R² \approx .32 for subject intercept variance
- > Task * linear time → $R^2 \approx .03$ for subject linear time slope variance
- > Task * quadratic time \rightarrow R² \approx .00 for residual variance (no random quadratic)

Example #4: Tracking and Talking:

Kemper, Hoffman, Schmalzried, Herman, & Kieweg (2011)

- Model: speech nested within subjects (no "items")
- **Dual task:** Track red ball with mouse while talking to examine costs of...
- Speech planning: current tracking suffers if *next* speech utterance is more complicated
- Speech production:
 current tracking suffers
 and becomes more
 variable while producing
 more complex speech
 and immediately after

Conclusions

- An ANOVA model may be less than ideal when:
 - > Stimuli are not completely controlled or exchangeable
 - > Experimental conditions are not strictly discrete
 - > Missing data may result in bias, a loss of power, or both
- ANOVA is a special case of a more general family of multilevel models (with nested or crossed effects as needed) that can offer additional flexibility:
 - ➤ Useful in addressing statistical problems →
 - Dependency, heterogeneity of variance, unbalanced or missing data
 - Examine predictor effects pertaining to each source of variation more accurately given that all variation is properly represented in the model
 - ▶ Useful in addressing substantive hypotheses →
 - Examining individual differences in effects of experimental manipulations

References for Papers Mentioned

- Clark, H.H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. *Journal of Verbal Learning and Verbal Behavior*, 12, 335-359.
- Hoffman, L., & Rovine, M. J. (2007). Multilevel models for the experimental psychologist: Foundations and illustrative examples. *Behavior Research Methods*, 39(1), 101-117. Electronic appendix available at Lesa's website.
- Kemper, S., Hoffman, L., Schmalzried, R., Herman, R., & Kieweg, D. (2011). Tracking talking: Dual task costs of planning and producing speech for young versus older adults. *Aging, Neuropsychology, and Cognition, 18*(3), 257-279.
- Locker Jr., L., Hoffman, L., & Bovaird, J. A. (2007). On the use of multilevel modeling in the analysis of psycholinguistic data. *Behavior Research Methods*, 39(4), 723-730. Electronic appendix available at Lesa's website.
- Mills, M., Hollingworth, A., Van der Stigchel, S., Hoffman, L., & Dodd, M. D. (2011). Examining the influence of task set on eye movements and fixations. *Journal of Vision*, 11(8), 1-15.