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knitr::opts_chunk$set(echo=TRUE) 
 
# Working directory for all chunks below 
  knitr::opts_knit$set(root.dir="C:/Dropbox/Papers and Data/SMiP/SMiP_2024_MLM_Part1") 

Multilevel Models for Subjects Crossed with Items Predicting Response Time (RT) 

This example will illustrate the estimation and interpretation of multilevel models with crossed random 
effects for an observed continuous outcome. The data are from the supplemental materials of Locker, 
Hoffman, and Bovaird (2007), as included in the Example 1 .zip folder. Response time (RT) outcomes for 
a lexical decision task (in which subjects decide as quickly as they can whether each item is a word or a 
non-word) were collected for 39 items from 38 subjects (total possible observations = 1482; total actual 
observations = 1392 after removing RTs for inaccurate responses). Items are words that varied 
systematically in two features: semantic frequency (freq01: 0=low, 1=high) and neighborhood size 
(size01: 0=small, 1=large). Given the small samples of subjects and items, we will use REML estimation 
and Satterthwaite denominator degrees of freedom. 

Loading Packages 

First (below), we set global options to my preferred versions, and then we install and load the R packages 
to be used. 

https://psycnet.apa.org/record/2007-19283-003
https://psycnet.apa.org/record/2007-19283-003
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# Set width of output and number of significant digits printed, 
# number of digits before using scientific notation, shut off significance stars 
options(width=120, digits=8, scipen=9, show.signif.stars=FALSE) 
 
#####  Check to see if packages are downloaded, install if not, then load  ##### 
  
# To import xls or xlsx data as table 
if (!require("readxl")) install.packages("readxl"); library(readxl) 
## Loading required package: readxl 
## Warning: package 'readxl' was built under R version 4.3.1 
 
# To get compact data description 
if (!require("psych")) install.packages("psych"); library(psych)  
## Loading required package: psych 
 
# To estimate MLMs using gls or lme 
if (!require("nlme")) install.packages("nlme"); library(nlme)  
## Loading required package: nlme 
 
# To estimate MLMs using lmer 
# Re-install to fix problem of matrix incompatibility 
#oo <- options(repos = "https://cran.r-project.org/") 
#utils::install.packages("Matrix") 
#utils::install.packages("lme4") 
#options(oo) 
library(Matrix); library(lme4) 
## Warning: package 'Matrix' was built under R version 4.3.3 
## Warning: package 'lme4' was built under R version 4.3.3 
##  
## Attaching package: 'lme4' 
## The following object is masked from 'package:nlme': 
##  
##     lmList 
 
# To get Satterthwaite DDF in lmer 
if (!require("lmerTest")) install.packages("lmerTest"); library(lmerTest)  
## Loading required package: lmerTest 
##  
## Attaching package: 'lmerTest' 
## The following object is masked from 'package:lme4': 
##  
##     lmer 
## The following object is masked from 'package:stats': 
##  
##     step 
 
# To get ICC in lmer 
if (!require("performance")) install.packages("performance"); library(performance) 
## Loading required package: performance 
## Warning: package 'performance' was built under R version 4.3.3 
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# Clear environment (re-run as needed for troubleshooting purposes) 
#rm(list=ls()) 

Data Import, Manipulation, and Description 

Next, we import the excel data file for this example and examine descriptive statistics. The data is in 
“long” (or “stacked”) format in which each row contains one trial (per subject per item). 

# Define variables for working directory and data name -- CHANGE THESE 
filesave = "C:\\Dropbox/Papers and Data/SMiP/SMiP_2024_MLM_Part1/" 
filename = "Example1.xlsx" 
setwd(dir=filesave) 
 
# Import Example 1 excel trial-level dataset 
Example1 = read_excel(paste0(filesave,filename))  
# Convert to data frame to use in analysis 
Example1 = as.data.frame(Example1) 
 
# Filter to only cases complete on all variables to be used below 
Example1 = Example1[complete.cases(Example1[ , c("RT","freq01","size01")]),] 
 
print("Descriptives for RT across all trials") 

## [1] "Descriptives for RT across all trials" 

describe(x=Example1[,c("RT")], fast=TRUE) 

##    vars    n   mean     sd min  max range   se 
## X1    1 1392 632.38 146.08 352 1806  1454 3.92 

print("Variance of RT across all trials") 

## [1] "Variance of RT across all trials" 

var(x=Example1[,c("RT")]) 

## [1] 21340.288 

# Add mean subject RT and number of responses per subject to dataset 
Example1$SubjectMeanRT = ave(x=Example1$RT, Example1$SubjectID, FUN=mean) 
Example1$SubjectN = ave(x=Example1$RT, Example1$SubjectID, FUN=length) 
# Create subject-level dataset 
Example1Subjects = unique(Example1[,c("SubjectID","SubjectMeanRT","SubjectN")]) 
print("Descriptives for SubjectMeanRT and SubjectN across subjects") 

## [1] "Descriptives for SubjectMeanRT and SubjectN across subjects" 

describe(x=Example1Subjects[,c("SubjectMeanRT","SubjectN")], fast=TRUE) 

##               vars  n   mean    sd    min    max  range    se 
## SubjectMeanRT    1 38 631.33 74.92 501.69 783.83 282.13 12.15 
## SubjectN         2 38  36.63  1.84  30.00  39.00   9.00  0.30 

# Add mean item RT and number of responses per item to dataset 
Example1$ItemMeanRT = ave(x=Example1$RT, Example1$ItemID, FUN=mean) 
Example1$ItemN = ave(x=Example1$RT, Example1$ItemID, FUN=length) 
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# Create item-level dataset to see how many items there are of each kind 
Example1Items = unique(Example1[,c("ItemID","freq01","size01","ItemMeanRT","ItemN")]) 
print("Cross-tabulation of item predictors") 

## [1] "Cross-tabulation of item predictors" 

table(Example1Items$freq01,Example1Items$size01) 

##     
##      0  1 
##   0 10 10 
##   1 10  9 

print("Descriptives for ItemMeanRT and ItemN across items") 

## [1] "Descriptives for ItemMeanRT and ItemN across items" 

describe(x=Example1Items[,c("ItemMeanRT","ItemN")], fast=TRUE) 

##            vars  n   mean    sd    min max  range   se 
## ItemMeanRT    1 39 637.18 56.16 566.97 833 266.03 8.99 
## ItemN         2 39  35.69  3.78  18.00  38  20.00 0.61 

As shown in the descriptive tables above, there is a considerable range in mean RT across subjects as well 
as across items. Thus, our models will likely need to represent RT variability across both crossed level-2 
dimensions (an empirical question to be answered below). 

Empty Models for Partitioning RT Variance 

Next, we will estimate and compare three “empty means” (i.e., no-predictor) models for RT, in which the 
fixed effects in each model include only an intercept, denoted in each as 𝛾000. In the notation below, the 
subscripts are 𝑡 = level-1 trial, 𝑖 = level-2 item, and 𝑠 = level-2 subject. 

Empty Means Model 1: Single-level 

The first empty means (single-level) model contains only a level-1 𝑒𝑡𝑖𝑠 trial-specific residual, whose 
estimated variance across all trials is denoted as the level-1 residual variance 𝜎𝑒

2: 

Empty Model 1: 𝑅𝑇𝑡𝑖𝑠 = 𝛾000 + 𝑒𝑡𝑖𝑠
𝑒𝑡𝑖𝑠 ∼ 𝑁(0, 𝜎𝑒

2)
 

print("Empty Model 1: Single-level ignoring dependency of subjects and items") 

## [1] "Empty Model 1: Single-level ignoring dependency of subjects and items" 

Empty1 = gls(data=Example1, method="REML", model=RT~1) 
print("Show default results"); summary(Empty1)  

## [1] "Show default results" 

## Generalized least squares fit by REML 
##   Model: RT ~ 1  
##   Data: Example1  
##         AIC       BIC     logLik 
##   17824.703 17835.179 -8910.3516 
##  
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## Coefficients: 
##                Value Std.Error   t-value p-value 
## (Intercept) 632.3829 3.9154395 161.51007       0 
##  
## Standardized residuals: 
##         Min          Q1         Med          Q3         Max  
## -1.91933767 -0.67347192 -0.19429278  0.50393967  8.03389752  
##  
## Residual standard error: 146.08316  
## Degrees of freedom: 1392 total; 1391 residual 

print("Model -2LL = "); -2*logLik(Empty1)  

## [1] "Model -2LL = " 

## 'log Lik.' 17820.703 (df=2) 

print("Level-1 residual variance = "); summary(Empty1)$sigma^2  

## [1] "Level-1 residual variance = " 

## [1] 21340.288 

As shown above, the single-level empty model perfectly reproduces the original RT mean = 632.4 as the 
fixed intercept 𝛾000. The REML estimate of RT SD = 146.1 (with total variance 𝜎𝑒

2 = 21340.3) also 
matches that of the original RT outcome as expected. 

Btw, we are using the function gls from the package nlme (instead of the function lm from base R that 
would be equivalent in this case) in order to get a −2𝐿𝐿 value by which to demonstrate a model 
comparison using a likelihood ratio test (LRT) below. 

Empty Model 2: Two-level for trials nested within subjects 

From here onwards, we are switching to the function lmer from the package lme4 (as called by the 
lmerTest package, more specifically) to estimate the two-level model. In each model below, the 
REML=TRUE argument specifies that we want to use restricted maximum likelihood estimation. The 
ddf="Satterthwaite" argument specifies that we want to use Satterthwaite denominator degrees of 
freedom for the t-tests of fixed effects. The function lme from the package nlme could also have been used 
to estimate the two-level model, but it does not provide Satterthwaite denominator degrees of freedom. 

The second empty means (two-level nested) model below adds a random intercept for each subject, 𝑈00𝑠, 
whose estimated variance across subjects is denoted as the level-2 subject random intercept variance 
𝜏𝑈00𝑆

2 : 

Empty Model 2: 𝑅𝑇𝑡𝑖𝑠 = 𝛾000 + 𝑈00𝑠 + 𝑒𝑡𝑖𝑠
𝑒𝑡𝑖𝑠 ∼ 𝑁(0, 𝜎𝑒

2)

𝑈00𝑠 ∼ 𝑁(0, 𝜏𝑈00𝑆

2 )

 

print("Empty Model 2: Two-level nested for trials nested in subjects only") 

## [1] "Empty Model 2: Two-level nested for trials nested in subjects only" 

Empty2 = lmer(data=Example1, REML=TRUE, formula=RT~1+(1|SubjectID)) 
print("Show results using Sattherwaite DDF") 
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## [1] "Show results using Sattherwaite DDF" 

summary(Empty2, ddf="Satterthwaite")  

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] 
## Formula: RT ~ 1 + (1 | SubjectID) 
##    Data: Example1 
##  
## REML criterion at convergence: 17540.3 
##  
## Scaled residuals:  
##      Min       1Q   Median       3Q      Max  
## -2.33983 -0.62036 -0.18420  0.36356  9.38355  
##  
## Random effects: 
##  Groups    Name        Variance Std.Dev. 
##  SubjectID (Intercept)  5167.1   71.883  
##  Residual              16307.2  127.700  
## Number of obs: 1392, groups:  SubjectID, 38 
##  
## Fixed effects: 
##             Estimate Std. Error      df t value  Pr(>|t|) 
## (Intercept)  631.417     12.154  37.004  51.951 < 2.2e-16 

As shown above, the two-level nested model returns a fixed intercept 𝛾000 = 631.4 that is nearly identical 
to the original RT mean = 632.4, but it now represents the sample mean of the subject means (and is thus 
a weighted mean). The sum of the two estimated variances = 21474.3 is not the same as the model-
estimated variance from the single-level model = 21340.3 (but it will be closer in completely balanced 
data, in which we have the same number of responses for each subject). 

print("Show intraclass correlation"); icc(Empty2) 

## [1] "Show intraclass correlation" 

## # Intraclass Correlation Coefficient 
##  
##     Adjusted ICC: 0.241 
##   Unadjusted ICC: 0.241 

The two-level nested model partitions the observed variance in RT into between-subject mean 
differences (24.1% as given by the intraclass correlation, 𝐼𝐶𝐶𝑆 = 0.241) and within-subject deviations 
from their subject means (the remaining 75.9%). The ICC was computed using icc from the performance 
package as follows: 

𝐼𝐶𝐶𝑆 =
𝜏𝑈00𝑆

2

𝜏𝑈00𝑆

2 + 𝜎𝑒
2
=

5167.1

5167.1 + 16307.2
= .241 

print("Print stored variance components table for reference") 

## [1] "Print stored variance components table for reference" 

as.data.frame(VarCorr(Empty2)) 
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##         grp        var1 var2       vcov      sdcor 
## 1 SubjectID (Intercept) <NA>  5167.0959  71.882515 
## 2  Residual        <NA> <NA> 16307.2062 127.699672 

# Compute model-implied total variance 
Empty2TotVar = as.data.frame(VarCorr(Empty2))[1,4] + 
               as.data.frame(VarCorr(Empty2))[2,4]  
print("Total model-implied variance = "); Empty2TotVar 

## [1] "Total model-implied variance = " 

## [1] 21474.302 

# Save subject random intercept variance as object to show computation of ICC 
Empty2SubVar = as.data.frame(VarCorr(Empty2))[1,4] 
# Manual computation of subject ICC 
print("Subject ICC = "); Empty2ICC_S = Empty2SubVar/Empty2TotVar; Empty2ICC_S 

## [1] "Subject ICC = " 

## [1] 0.24061764 

The ranova command then conducts a likelihood ratio test comparing the log-likelihood (𝐿𝐿) from the 
empty means models with vs without the level-2 subject random intercept variance 𝜏𝑈00𝑆

2 : 

print("Show intraclass correlation LRT"); ranova(Empty2) 

## [1] "Show intraclass correlation LRT" 

## ANOVA-like table for random-effects: Single term deletions 
##  
## Model: 
## RT ~ (1 | SubjectID) 
##                 npar   logLik     AIC     LRT Df Pr(>Chisq) 
## <none>             3 -8770.13 17546.3                       
## (1 | SubjectID)    2 -8910.35 17824.7 280.439  1 < 2.22e-16 

Here’s how to compute an LRT using either 𝐿𝐿 or −2𝐿𝐿, in which the simpler model goes first either way: 

𝐿𝐿 version: (𝐿𝐿Empty1) − (𝐿𝐿Empty2) = (−8910.4) − (−8770.1) = 280.4 

−2𝐿𝐿 version: (−2𝐿𝐿Empty1) − (−2𝐿𝐿Empty2) = (17820.7) − (17540.3) = 280.4 

The −2𝐿𝐿 difference, denoted as −2𝛥𝐿𝐿, is then treated as a 𝜒2 statistic with 1 degree of freedom (𝑑𝑓) to 
test whether the level-2 subject random intercept variance is significantly > 0. As expected, the 𝐼𝐶𝐶 =
0.241 is significantly > 0, −2𝛥𝐿𝐿(1) = 280.4, 𝑝 < .001. 

However, because variances are bounded at 0 (i.e., the null hypothesis of 0 is on its boundary), the more 
correct way to conduct this LRT is to compare the −2𝛥𝐿𝐿 to a mixture of 𝜒2 distributions: with 𝑑𝑓 = 0 for 
when the variance would have been negative in a two-sided symmetric sampling distribution around 0 
(which is not allowed), and 𝑑𝑓 = 1 for when the variance would have been positive. For this simple case, 
this amounts to cutting the 𝑝-value in half, which is still < .001. Btw, the critical value for a mixture of 
𝑑𝑓 = 0,1 is 2.71 at 𝑝 < .05 (instead of 3.84 for 𝑑𝑓 = 1). 
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Empty Model 3: Two-level for trials nested in subjects crossed with items 

The third empty means (two-level crossed) model below adds a random intercept for each item, 𝑈0𝑖0, 
whose estimated variance across items is then denoted as the level-2 item random intercept variance 
𝜏𝑈0𝐼0

2 : 

Empty Model 3: 𝑅𝑇𝑡𝑖𝑠 = 𝛾000 + 𝑈00𝑠 + 𝑈0𝑖0 + 𝑒𝑡𝑖𝑠
𝑒𝑡𝑖𝑠 ∼ 𝑁(0, 𝜎𝑒

2)

𝑈00𝑠 ∼ 𝑁(0, 𝜏𝑈00𝑆

2 )

𝑈0𝑖0 ∼ 𝑁(0, 𝜏𝑈0𝐼0

2 )

 

print("Empty Model 3: Two-level crossed for trials nested in subjects and in items") 

## [1] "Empty Model 3: Two-level crossed for trials nested in subjects and in items" 

Empty3 = lmer(data=Example1, REML=TRUE, formula=RT~1+(1|SubjectID)+(1|ItemID)) 
print("Show results using Sattherwaite DDF")  

## [1] "Show results using Sattherwaite DDF" 

summary(Empty3, ddf="Satterthwaite") 

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] 
## Formula: RT ~ 1 + (1 | SubjectID) + (1 | ItemID) 
##    Data: Example1 
##  
## REML criterion at convergence: 17439.9 
##  
## Scaled residuals:  
##      Min       1Q   Median       3Q      Max  
## -2.27264 -0.60106 -0.14868  0.37684  9.74505  
##  
## Random effects: 
##  Groups    Name        Variance Std.Dev. 
##  ItemID    (Intercept)  2414.1   49.134  
##  SubjectID (Intercept)  5166.7   71.880  
##  Residual              14343.0  119.762  
## Number of obs: 1392, groups:  ItemID, 39; SubjectID, 38 
##  
## Fixed effects: 
##             Estimate Std. Error      df t value  Pr(>|t|) 
## (Intercept)  635.328     14.434  59.435  44.016 < 2.2e-16 

As shown above, the two-level crossed model returns a fixed intercept 𝛾000 = 635.3 that is very close to 
the original RT mean = 632.4, but it now represents the sample mean of the subject means AND the item 
means (and is thus a weighted mean). We now have three variance components (or “piles” of variance, as 
I like to call them). 

print("Show intraclass correlations for proportion of variance due to each sampling 
dimension")  

## [1] "Show intraclass correlations for proportion of variance due to each sampling 
dimension" 
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icc(Empty3, by_group=TRUE) 

## # ICC by Group 
##  
## Group     |   ICC 
## ----------------- 
## ItemID    | 0.110 
## SubjectID | 0.236 

Here is how the ICCs above were computed: 

𝐼𝐶𝐶𝐼 =
𝜏𝑈0𝐼0

2

𝜏𝑈00𝑆

2 + 𝜏𝑈0𝐼0

2 + 𝜎𝑒2
=

2414.1

5166.7 + 2414.1 + 14343.0
= .110

𝐼𝐶𝐶𝑆 =
𝜏𝑈00𝑆

2

𝜏𝑈00𝑆

2 + 𝜏𝑈0𝐼0

2 + 𝜎𝑒2
=

5166.7

5166.7 + 2414.1 + 14343.0
= .236

 

As shown above, the two-level crossed model partitions the observed variance in RT into between-
subject mean differences (23.6% as given by 𝐼𝐶𝐶𝑆 = 0.236, between-item mean differences (11% as 
given by 𝐼𝐶𝐶𝐼 = 0.11, and trial-specific deviations from their subject and item means (the remaining 
65.4%). Note that the previous two-level nested model 𝐼𝐶𝐶𝑆 = 0.241 is very similar to that obtained from 
the crossed model, as it was the level-1 residual variance that was partitioned into a new level-2 item 
random intercept variance. 

Here is how these ICCs can be computed manually using saved output: 

print("Print stored variance components table for reference") 

## [1] "Print stored variance components table for reference" 

as.data.frame(VarCorr(Empty3)) 

##         grp        var1 var2       vcov      sdcor 
## 1    ItemID (Intercept) <NA>  2414.1132  49.133626 
## 2 SubjectID (Intercept) <NA>  5166.7217  71.879912 
## 3  Residual        <NA> <NA> 14343.0430 119.762444 

# Compute model-implied total variance 
Empty3TotVar = as.data.frame(VarCorr(Empty3))[1,4] + 
               as.data.frame(VarCorr(Empty3))[2,4] + 
               as.data.frame(VarCorr(Empty3))[3,4] 
print("Total model-implied variance = "); Empty3TotVar 

## [1] "Total model-implied variance = " 

## [1] 21923.878 

# Save each variance as an object 
Empty3ItemIntVar = as.data.frame(VarCorr(Empty3))[1,4] 
Empty3SubIntVar  = as.data.frame(VarCorr(Empty3))[2,4] 
Empty3ResVar     = as.data.frame(VarCorr(Empty3))[3,4] 
# Manual computation of subject and item ICCs 
print("Subject ICC = "); Empty3ICC_S = Empty3SubIntVar /Empty3TotVar; Empty3ICC_S 

## [1] "Subject ICC = " 
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## [1] 0.23566641 

print("Item ICC = ");    Empty3ICC_I = Empty3ItemIntVar/Empty3TotVar; Empty3ICC_I 

## [1] "Item ICC = " 

## [1] 0.11011342 

The ranova command then conducts a likelihood ratio test comparing the log-likelihood from the empty 
models with vs without each level-2 random intercept variance: 

print("Show intraclass correlation LRTs"); ranova(Empty3) 

## [1] "Show intraclass correlation LRTs" 

## ANOVA-like table for random-effects: Single term deletions 
##  
## Model: 
## RT ~ (1 | SubjectID) + (1 | ItemID) 
##                 npar   logLik     AIC     LRT Df Pr(>Chisq) 
## <none>             4 -8719.93 17447.9                       
## (1 | SubjectID)    3 -8878.90 17763.8 317.925  1 < 2.22e-16 
## (1 | ItemID)       3 -8770.13 17546.3 100.399  1 < 2.22e-16 

The LRT from ranova indicates that both random intercept variances are significantly > 0, items: 
−2𝛥𝐿𝐿(1) = 100.4, 𝑝 < .001, and subjects: −2𝛥𝐿𝐿(1) = 317.9, 𝑝 < .001. The conclusion would be the 
same using a mixture of 𝜒2 distributions with 𝑑𝑓 = 0,1 as was found in the previous model. 

To help convey effect size of these piles of variance in a more meaningful metric, we can use the results of 
our model to compute 95% random effects confidence intervals for the subject and item random 
intercepts. These indicate the expected range of the subject intercepts and item intercepts for 95% of our 
sample as follows: 

Subject Random Intercept 95% CI = 𝛾000 ± 1.96 × √𝜏𝑈00𝑆

2

Subject Random Intercept 95% CI = 635.3 ± 1.96 × √5166.7 = 494.4 to 776.2

Item Random Intercept 95% CI = 𝛾000 ± 1.96 × √𝜏𝑈0𝐼0

2

Item Random Intercept 95% CI = 635.3 ± 1.96 × √2414.1 = 539.0 to 731.6

 

Here is how the random effect confidence intervals can be computed using saved output: 

# Save fixed intercept for use below 
Empty3FixInt = fixef(Empty3) 
print("95% random intercept confidence interval for subjects") 

## [1] "95% random intercept confidence interval for subjects" 

SubInt_LCI = Empty3FixInt - 1.96*sqrt(Empty3SubIntVar) 
SubInt_UCI = Empty3FixInt + 1.96*sqrt(Empty3SubIntVar)  
print("Subject intercept lower CI = "); SubInt_LCI 

## [1] "Subject intercept lower CI = " 
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## (Intercept)  
##    494.4431 

print("Subject intercept upper CI = "); SubInt_UCI 

## [1] "Subject intercept upper CI = " 

## (Intercept)  
##   776.21235 

print("95% random intercept confidence interval for items") 

## [1] "95% random intercept confidence interval for items" 

ItemInt_LCI = Empty3FixInt - 1.96*sqrt(Empty3ItemIntVar)  
ItemInt_UCI = Empty3FixInt + 1.96*sqrt(Empty3ItemIntVar) 
print("Item intercept lower CI = "); ItemInt_LCI 

## [1] "Item intercept lower CI = " 

## (Intercept)  
##   539.02582 

print("Item intercept upper CI = "); ItemInt_UCI 

## [1] "Item intercept upper CI = " 

## (Intercept)  
##   731.62963 

Conditional Models Including Item Predictors of RT 

Conditional Model 1: Add Fixed Slopes of Item Predictors 

Next, we add fixed slopes for the item predictors (freq01 and size01) to the two-level crossed model to 
predict RT (in which the index in the second subject keeps track of which item predictor each is). The 
fixed effects in each model include the intercept 𝛾000, the fixed slopes 𝛾010 and 𝛾020 for the main effects of 
freq01 and size01, respectively, and a fixed slope for their interaction term, 𝛾030: 

Conditional Model 1: 𝑅𝑇𝑡𝑖𝑠 = 𝛾000 + 𝛾010(freq01
𝑖
) + 𝛾020(size01𝑖) + 𝛾030(freq01

𝑖
)(size01𝑖) + 𝑈00𝑠 +𝑈0𝑖0 + 𝑒𝑡𝑖𝑠

𝑒𝑡𝑖𝑠 ∼ 𝑁(0, 𝜎𝑒
2)

𝑈00𝑠 ∼ 𝑁(0, 𝜏𝑈00𝑆

2 )

𝑈0𝑖0 ∼ 𝑁(0, 𝜏𝑈0𝐼0

2 )

 

print("Conditional Model 1: Add fixed slopes for item predictors") 

## [1] "Conditional Model 1: Add fixed slopes for item predictors" 

Cond1 = lmer(data=Example1, REML=TRUE, formula= 
             RT~1+freq01+size01+freq01:size01+(1|SubjectID)+(1|ItemID)) 
print("Show results using Sattherwaite DDF")  

## [1] "Show results using Sattherwaite DDF" 

summary(Cond1, ddf="Satterthwaite") 
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## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] 
## Formula: RT ~ 1 + freq01 + size01 + freq01:size01 + (1 | SubjectID) +      (1 | 
ItemID) 
##    Data: Example1 
##  
## REML criterion at convergence: 17402.4 
##  
## Scaled residuals:  
##      Min       1Q   Median       3Q      Max  
## -2.29868 -0.59565 -0.15486  0.37923  9.68272  
##  
## Random effects: 
##  Groups    Name        Variance Std.Dev. 
##  ItemID    (Intercept)  1692.4   41.139  
##  SubjectID (Intercept)  5168.5   71.892  
##  Residual              14341.0  119.754  
## Number of obs: 1392, groups:  ItemID, 39; SubjectID, 38 
##  
## Fixed effects: 
##               Estimate Std. Error       df t value  Pr(>|t|) 
## (Intercept)   615.7825    18.5748  60.6612 33.1514 < 2.2e-16 
## freq01         70.0208    20.5969  32.4008  3.3996  0.001807 
## size01          4.4349    20.4219  31.3924  0.2172  0.829484 
## freq01:size01 -72.0306    29.3780  31.7807 -2.4519  0.019894 
##  
## Correlation of Fixed Effects: 
##             (Intr) freq01 size01 
## freq01      -0.546               
## size01      -0.551  0.497        
## freq01:sz01  0.383 -0.701 -0.695 

# Btw, here is shorter code to include interactions with all lower-order main effects: 
#Cond1 = lmer(data=Example1, REML=TRUE,  
#             RT~1+freq01*size01+(1|SubjectID)+(1|ItemID)) 

Let’s interpret the results for the fixed effects in the model above: 

fixed intercept 𝛾000 = 

fixed slope for freq01 𝛾010 = 

fixed slope for size01 𝛾020 = 

fixed slope for interaction 𝛾030 = 

As we can see, only some of the possible predicted RT cell means and simple slopes are given directly as 
model parameters (and thus are shown in the default output). To get the others, we can use 
thecontest1D function from the lmerTest package to generate linear combinations of our fixed effects 
(and their corresponding standard errors and hypothesis tests using Satterthwaite denominator degrees 
of freedom here). In the c=(_,_,_,_) calls below, the blanks provide multipliers for each fixed effect in 
the order they appear in the output. Thus, the first number is for the intercept, the second is for the 
freq01 slope, the third is for the size01 slope, and the fourth is for the interaction slope. 

First, to get a predicted mean for any item, we can use the model fixed effects: 
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Predicted RT = 𝛾000 + 𝛾010(freq01
𝑖
) + 𝛾020(size01𝑖) + 𝛾030(freq01

𝑖
)(size01𝑖) 

# Cell means (the manual way) 
print("RT for low  freq, small size"); contest1D(Cond1, L=c(1,0,0,0)) 

## [1] "RT for low  freq, small size" 

##    Estimate Std. Error        df   t value     Pr(>|t|) 
## 1 615.78251   18.57485 60.661209 33.151412 1.424135e-40 

print("RT for low  freq, large size"); contest1D(Cond1, L=c(1,0,1,0)) 

## [1] "RT for low  freq, large size" 

##    Estimate Std. Error        df  t value      Pr(>|t|) 
## 1 620.21746  18.549125 60.333446 33.43648 1.2145796e-40 

print("RT for high freq, small size"); contest1D(Cond1, L=c(1,1,0,0)) 

## [1] "RT for high freq, small size" 

##    Estimate Std. Error        df   t value      Pr(>|t|) 
## 1 685.80335  18.742481 62.663015 36.590852 5.3255942e-44 

print("RT for high freq, large size"); contest1D(Cond1, L=c(1,1,1,1)) 

## [1] "RT for high freq, large size" 

##    Estimate Std. Error        df   t value      Pr(>|t|) 
## 1 618.20773  19.151359 58.825634 32.280097 4.0663877e-39 

Second, to get predicted slopes for any item, we use only the fixed effects that involve the predictor the 
slope is for, then factor that predictor out of the equation, as follows: 

Predicted RT = 𝛾000 + 𝛾010(freq01
𝑖
) + 𝛾020(size01𝑖) + 𝛾030(freq01

𝑖
)(size01𝑖)

Predicted freq01 slope = 𝛾010(freq01
𝑖
) + 𝛾030(freq01

𝑖
)(size01𝑖)

Predicted freq01 slope = 𝛾010 + 𝛾030(size01𝑖)

Predicted size01 slope = 𝛾020(size01𝑖) + 𝛾030(freq01
𝑖
)(size𝑖)

Predicted size01 slope = 𝛾020 + 𝛾030(freq01
𝑖
)

 

# Simple effects of freq per size 
print("Freq slope for small size"); contest1D(Cond1, L=c(0,1,0,0)) 

## [1] "Freq slope for small size" 

##    Estimate Std. Error        df   t value     Pr(>|t|) 
## 1 70.020836  20.596884 32.400846 3.3995839 0.0018065107 

print("Freq slope for large size"); contest1D(Cond1, L=c(0,1,0,1)) 

## [1] "Freq slope for large size" 
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##     Estimate Std. Error        df      t value   Pr(>|t|) 
## 1 -2.0097334  20.947767 31.194007 -0.095940223 0.92418176 

# Simple effects of size per freq 
print("Size slope for low freq");  contest1D(Cond1, L=c(0,0,1,0)) 

## [1] "Size slope for low freq" 

##   Estimate Std. Error        df   t value   Pr(>|t|) 
## 1 4.434948   20.42187 31.392391 0.2171666 0.82948379 

print("Size slope for high freq"); contest1D(Cond1, L=c(0,0,1,1)) 

## [1] "Size slope for high freq" 

##     Estimate Std. Error        df    t value     Pr(>|t|) 
## 1 -67.595621  21.119301 32.151039 -3.2006561 0.0030813267 

# Interaction (repeated for convenience, two possible interpretations) 
print("Size slope diff for low vs high freq");    contest1D(Cond1, L=c(0,0,0,1)) 

## [1] "Size slope diff for low vs high freq" 

##     Estimate Std. Error        df    t value    Pr(>|t|) 
## 1 -72.030569  29.378023 31.780715 -2.4518521 0.019893842 

print("Freq slope diff for small vs large size"); contest1D(Cond1, L=c(0,0,0,1)) 

## [1] "Freq slope diff for small vs large size" 

##     Estimate Std. Error        df    t value    Pr(>|t|) 
## 1 -72.030569  29.378023 31.780715 -2.4518521 0.019893842 

We can visualize the interaction by creating “fake items” to plot predicted outcomes from the fixed 
effects: 

# Make a plot of predicted outcomes 
# Create columns of values to be changed across fake items (FI) 
FakeFreq = c(0,1,0,1) 
FakeSize = c(0,0,1,1) 
# Create dataset using just-created columns and constants for other model variables 
FakeItems = data.frame(SubjectID=-99, ItemID=-99, freq01=FakeFreq, size01=FakeSize) 
 
# Merge predicted values from main-effects-only model into FI data 
FakeItems = data.frame(FakeItems, yhat=predict(object=Cond1, newdata=FakeItems, 
re.form=NA)) 
 
# Make plot 
plot(y=FakeItems$yhat, x=FakeItems$freq01, type="n", ylim=c(500,800), xlim=c(0,1), 
     xlab="Frequency (0=low, 1=high)", ylab="Predicted RT") 
lines(x=FakeItems$freq01[1:2], y=FakeItems$yhat[1:2], type="l", col="blue1") 
lines(x=FakeItems$freq01[3:4], y=FakeItems$yhat[3:4], type="l", col="red1") 
legend(x=.05, y=790, legend=c("Size 0=small","Size 1=large"),  
       col=c("blue1","red1"), lty=1) #lty=linetype 
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Third, to get an effect size for the contribution of our item predictors, we can compute a pseudo-𝑅2 value 
for the proportion reduction in item random intercept variance relative to the empty means model: 

Pseudo-R𝐼
2 =

Empty3 Variance
𝐼
− Cond1 Variance𝐼

Empty3 Variance
𝐼

=
2414.1 − 1692.4

2414.1
= .299 

Here is how to compute pseudo-𝑅2 values using saved output: 

print("Print stored variance components table for reference") 

## [1] "Print stored variance components table for reference" 

as.data.frame(VarCorr(Cond1)) 

##         grp        var1 var2       vcov      sdcor 
## 1    ItemID (Intercept) <NA>  1692.4114  41.138928 
## 2 SubjectID (Intercept) <NA>  5168.4803  71.892143 
## 3  Residual        <NA> <NA> 14341.0390 119.754077 

# Save each variance as an object 
Cond1ItemIntVar = as.data.frame(VarCorr(Cond1))[1,4] 
Cond1SubIntVar  = as.data.frame(VarCorr(Cond1))[2,4] 
Cond1ResVar     = as.data.frame(VarCorr(Cond1))[3,4] 
# Compute pseudo-R2 for each variance 
Cond1ItemIntR2 = (Empty3ItemIntVar-Cond1ItemIntVar)/Empty3ItemIntVar; Cond1ItemIntR2 

## [1] 0.2989511 

Cond1SubIntR2  = (Empty3SubIntVar- Cond1SubIntVar) /Empty3SubIntVar;  Cond1SubIntR2 

## [1] -0.00034036623 
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Cond1ResR2     = (Empty3ResVar-    Cond1ResVar)    /Empty3ResVar;     Cond1ResR2 

## [1] 0.00013971802 

We can get a significance test for that item random intercept pseudo-𝑅2 value using the function 
contestMD from the lmerTest package, which allows us to obtain a joint hypothesis test for multiple 
slopes at once: 

print("Omnibus F-test for model prediction") 

## [1] "Omnibus F-test for model prediction" 

contestMD(Cond1, ddf="Satterthwaite", L=rbind(c(0,1,0,0),c(0,0,1,0),c(0,0,0,1))) 

##      Sum Sq   Mean Sq NumDF     DenDF   F value       Pr(>F) 
## 1 229892.42 76630.807     3 31.781956 5.3434627 0.0042752274 

The two item features and their interaction significantly predicted RT, 𝐹(3,  37.8) = 5.34, 𝑝 = .004, and 
accounted for 29.9% of the item random intercept variance. The other variances remained unchanged 
relative to the empty means model, as expected given that no subject-level or trial-level predictors were 
added. 

We can also see whether the item random intercept variance that remains is significantly > 0 using an 
LRT against a model without it via ranova: 

print("LRT for remaining item random intercept variance"); ranova(Cond1) 

## [1] "LRT for remaining item random intercept variance" 

## ANOVA-like table for random-effects: Single term deletions 
##  
## Model: 
## RT ~ freq01 + size01 + (1 | SubjectID) + (1 | ItemID) + freq01:size01 
##                 npar   logLik     AIC     LRT Df Pr(>Chisq) 
## <none>             7 -8701.22 17416.5                       
## (1 | SubjectID)    6 -8860.32 17732.7 318.202  1 < 2.22e-16 
## (1 | ItemID)       6 -8733.22 17478.4  63.991  1 1.2496e-15 

Significant item random intercept variance remained, −2𝛥𝐿𝐿(1) = 64.0, 𝑝 < .001, so we will retain the 
level-2 item random intercept variance in our model. 

Conditional Model 2: Add Random Slope over Subjects for the Freqency Item Predictor 

Next, we add to the two-level crossed model a subject random slope for the item predictor freq01, 𝑈01𝑠, 
whose variance across subjects is then estimated to form the level-2 subject random freq01 slope 
variance 𝜏𝑈01𝑆

2 : 

Conditional Model 2: 𝑅𝑇𝑡𝑖𝑠 = 𝛾000 + 𝛾010(freq01
𝑖
) + 𝛾020(size01𝑖) + 𝛾030(freq01

𝑖
)(size01𝑖)

+𝑈00𝑠 + 𝑈010𝑠(freq01
𝑖
) + 𝑈0𝑖0 + 𝑒𝑡𝑖𝑠

𝑒𝑡𝑖𝑠 ∼ 𝑁(0, 𝜎𝑒
2)

[
𝑈00𝑠

𝑈01𝑠
] ∼ 𝑀𝑉𝑁([

0
0
] , [

𝜏𝑈00𝑆

2 𝜏𝑈00𝑆,01𝑆

𝜏𝑈00𝑆,01𝑆
𝜏𝑈01𝑆

2 ])

𝑈0𝑖0 ∼ 𝑁(0, 𝜏𝑈0𝐼0

2 )
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This new random slope allow individual differences in the extent of the RT difference between low and 
high frequency words (equivalently for both small and large neighborhoods). Also added is the 
covariance between the subject random intercepts and the subject random freq01 slopes (which is 
provided as a correlation in the output below). 

print("Conditional Model 2: Add random slope across subjects for item freq") 

## [1] "Conditional Model 2: Add random slope across subjects for item freq" 

Cond2 = lmer(data=Example1, REML=TRUE, formula= 
             RT~1+freq01+size01+freq01:size01+(1+freq01|SubjectID)+(1|ItemID)) 
print("Show results using Sattherwaite DDF")  

## [1] "Show results using Sattherwaite DDF" 

summary(Cond2, ddf="Satterthwaite") 

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] 
## Formula: RT ~ 1 + freq01 + size01 + freq01:size01 + (1 + freq01 | SubjectID) +      (1 
| ItemID) 
##    Data: Example1 
##  
## REML criterion at convergence: 17397.6 
##  
## Scaled residuals:  
##      Min       1Q   Median       3Q      Max  
## -2.40130 -0.59429 -0.15206  0.37306  9.70966  
##  
## Random effects: 
##  Groups    Name        Variance Std.Dev. Corr  
##  ItemID    (Intercept)  1700.40  41.236        
##  SubjectID (Intercept)  4266.15  65.316        
##            freq01        371.71  19.280  0.693 
##  Residual              14244.40 119.350        
## Number of obs: 1392, groups:  ItemID, 39; SubjectID, 38 
##  
## Fixed effects: 
##               Estimate Std. Error       df t value  Pr(>|t|) 
## (Intercept)   615.8495    17.9390  55.8230 34.3303 < 2.2e-16 
## freq01         69.8452    20.8595  33.5319  3.3484  0.002019 
## size01          4.4433    20.4479  31.3928  0.2173  0.829381 
## freq01:size01 -72.0688    29.4162  31.7842 -2.4500  0.019980 
##  
## Correlation of Fixed Effects: 
##             (Intr) freq01 size01 
## freq01      -0.499               
## size01      -0.571  0.491        
## freq01:sz01  0.397 -0.693 -0.695 

print("LRT for subject random slope of item freq"); ranova(Cond2) 

## [1] "LRT for subject random slope of item freq" 

## ANOVA-like table for random-effects: Single term deletions 
##  
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## Model: 
## RT ~ freq01 + size01 + (1 + freq01 | SubjectID) + (1 | ItemID) + freq01:size01 
##                                    npar   logLik     AIC     LRT Df Pr(>Chisq) 
## <none>                                9 -8698.79 17415.6                       
## freq01 in (1 + freq01 | SubjectID)    7 -8701.22 17416.5  4.8744  2   0.087405 
## (1 | ItemID)                          8 -8731.19 17478.4 64.8086  1 8.2537e-16 

As shown above, the fixed freq01 slope is now 𝛾010 = 69.8, whereas it was previously 𝛾010 = 70. It, too, 
has changed interpretation: It is now the mean of the subject-specific freq01 slopes. The new subject 
random slope variance 𝜏𝑈01𝑆

2 = 371.7. The subject random slopes were positively correlated 𝑟 = 0.69 

with the subject random intercepts, indicating that subjects who had slower response times to low-
frequency words (i.e., higher intercepts at freq01=0) tended to have more of a difference between low- 
and high-frequency words (i.e., steeper freq01 slopes). 

However, the LRT generated by ranova indicates that the model fit did not improve from adding the new 
random slope variance and correlation, −2𝛥𝐿𝐿(2) = 4.87, 𝑝 = .087. To use the more correct mixture 𝜒2 
distribution instead, we would use 𝑑𝑓 = 1 for when the random slope variance would have become 
negative and 𝑑𝑓 = 2 for when it would have been positive; the covariance does not have a boundary at 0 
so we keep its 𝑑𝑓 = 1 regardless. The mixture critical value at 𝑝 < .05 for 𝑑𝑓 = 1,2 is 5.14, and we can 
compute an exact 𝑝-value for the mixture by weighting each 𝑝-value by 0.5 and then summing them, as 
shown below: 

print("LRT for random slope variance using a mixture-chi-square test") 

## [1] "LRT for random slope variance using a mixture-chi-square test" 

Cond2Diff2LL = -2*(logLik(Cond1)-logLik(Cond2)); Cond2Diff2LL 

## 'log Lik.' 4.8744161 (df=7) 

Cond2DiffP1 = pchisq(Cond2Diff2LL, df=1, lower.tail=FALSE); Cond2DiffP1  

## 'log Lik.' 0.027257662 (df=7) 

Cond2DiffP2 = pchisq(Cond2Diff2LL, df=2, lower.tail=FALSE); Cond2DiffP2 

## 'log Lik.' 0.087404542 (df=7) 

Cond2DiffP12 = (.5*Cond2DiffP1) + (.5*Cond2DiffP2) 
print("Test statistic and mixture p-values for df=1,2")  

## [1] "Test statistic and mixture p-values for df=1,2" 

Cond2Diff2LL; Cond2DiffP12 

## 'log Lik.' 4.8744161 (df=7) 

## 'log Lik.' 0.057331102 (df=7) 

Either way, we would not retain the two new parameters (and so they are removed in the model that 
follows). To get a sense of the degree of slope differences (to help convey effect size), however, we can 
still compute a 95% random slope confidence interval as follows: 
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Subject Random Freq01 Slope 95% CI = 𝛾010 ± 1.96 × √𝜏𝑈01𝑆

2

Subject Random Freq01 Slope 95% CI = 69.8 ± 1.96 × √371.7 = 32.1 to 107.6

 

This indicates the expected variability in how high-frequency words differ from low-frequency words, in 
which 95% of the sample subjects would be expected to have a positive item predictor slope. 

Below is how the random effect confidence intervals can be computed using saved output: 

# Print stored fixed effects table for reference 
as.data.frame(fixef(Cond2)) 

##               fixef(Cond2) 
## (Intercept)    615.8495237 
## freq01          69.8452105 
## size01           4.4433239 
## freq01:size01  -72.0687755 

# Save fixed freq01 slope for use below 
Cond2FreqSlp = as.data.frame(fixef(Cond2))[2,1] 
# Print stored variance components table for reference 
as.data.frame(VarCorr(Cond2)) 

##         grp        var1   var2        vcov       sdcor 
## 1    ItemID (Intercept)   <NA>  1700.40425  41.2359583 
## 2 SubjectID (Intercept)   <NA>  4266.14952  65.3157678 
## 3 SubjectID      freq01   <NA>   371.70671  19.2796969 
## 4 SubjectID (Intercept) freq01   872.17244   0.6926026 
## 5  Residual        <NA>   <NA> 14244.39883 119.3499008 

# Save subject random freq01 slope variance for use below 
Cond2SubFreqVar = as.data.frame(VarCorr(Cond2))[3,4]       
print("95% random freq01 slope confidence interval for subjects") 

## [1] "95% random freq01 slope confidence interval for subjects" 

SubFreqSlp_LCI = Cond2FreqSlp - 1.96*sqrt(Cond2SubFreqVar)  
SubFreqSlp_UCI = Cond2FreqSlp + 1.96*sqrt(Cond2SubFreqVar) 
print("Subject freq01 slope lower CI = "); SubFreqSlp_LCI 

## [1] "Subject freq01 slope lower CI = " 

## [1] 32.057005 

print("Subject freq01 slope upper CI = "); SubFreqSlp_UCI 

## [1] "Subject freq01 slope upper CI = " 

## [1] 107.63342 

Conditional Model 3: Add Random Slope over Subjects for the Neighborhood Item Predictor 

Lastly, we add to the two-level crossed model a subject random slope for the item predictor size01, 𝑈02𝑠, 
whose variance across subjects is then estimated to form the level-2 subject random size01 slope 
variance 𝜏𝑈02𝑆

2 : 



SMiP 2024 MLM Example 1 page 20 

 

Conditional Model 3: 𝑅𝑇𝑡𝑖𝑠 = 𝛾000 + 𝛾010(freq01
𝑖
) + 𝛾020(size01𝑖) + 𝛾030(freq01

𝑖
)(size01𝑖)

+𝑈00𝑠 + 𝑈020𝑠(size01𝑖) + 𝑈0𝑖0 + 𝑒𝑡𝑖𝑠
𝑒𝑡𝑖𝑠 ∼ 𝑁(0, 𝜎𝑒

2)

[
𝑈00𝑠

𝑈02𝑠
] ∼ 𝑀𝑉𝑁([

0
0
] , [

𝜏𝑈00𝑆

2 𝜏𝑈00𝑆,02𝑆

𝜏𝑈00𝑆,02𝑆
𝜏𝑈02𝑆

2 ])

𝑈0𝑖0 ∼ 𝑁(0, 𝜏𝑈0𝐼0

2 )

 

This new random slope allow individual differences in the extent of the RT difference between small and 
large neighborhood-size words (equivalently for both low and high frequency words). Also added is the 
covariance between the subject random intercepts and the subject random size01 slopes (which is 
provided as a correlation in the output below). 

print("Conditional Model 3: Add random slope across subjects for item size") 

## [1] "Conditional Model 3: Add random slope across subjects for item size" 

Cond3 = lmer(data=Example1, REML=TRUE, formula= 
             RT~1+freq01+size01+freq01:size01+(1+size01|SubjectID)+(1|ItemID)) 
print("Show results using Sattherwaite DDF")  

## [1] "Show results using Sattherwaite DDF" 

summary(Cond3, ddf="Satterthwaite") 

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] 
## Formula: RT ~ 1 + freq01 + size01 + freq01:size01 + (1 + size01 | SubjectID) +      (1 
| ItemID) 
##    Data: Example1 
##  
## REML criterion at convergence: 17402.4 
##  
## Scaled residuals:  
##      Min       1Q   Median       3Q      Max  
## -2.27766 -0.59622 -0.15598  0.37985  9.68269  
##  
## Random effects: 
##  Groups    Name        Variance  Std.Dev. Corr  
##  ItemID    (Intercept)  1692.994  41.1460       
##  SubjectID (Intercept)  5103.813  71.4410       
##            size01         84.446   9.1895 0.067 
##  Residual              14319.258 119.6631       
## Number of obs: 1392, groups:  ItemID, 39; SubjectID, 38 
##  
## Fixed effects: 
##               Estimate Std. Error       df t value  Pr(>|t|) 
## (Intercept)   615.7996    18.5290  57.9654 33.2344 < 2.2e-16 
## freq01         70.0007    20.5968  32.4030  3.3986  0.001811 
## size01          4.4155    20.4763  31.4448  0.2156  0.830662 
## freq01:size01 -72.0237    29.3780  31.7830 -2.4516  0.019904 
##  
## Correlation of Fixed Effects: 
##             (Intr) freq01 size01 
## freq01      -0.548               
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## size01      -0.548  0.496        
## freq01:sz01  0.384 -0.701 -0.693 

print("LRT for subject random slope of item freq"); ranova(Cond3) 

## [1] "LRT for subject random slope of item freq" 

## ANOVA-like table for random-effects: Single term deletions 
##  
## Model: 
## RT ~ freq01 + size01 + (1 + size01 | SubjectID) + (1 | ItemID) + freq01:size01 
##                                    npar   logLik     AIC     LRT Df Pr(>Chisq) 
## <none>                                9 -8701.18 17420.4                       
## size01 in (1 + size01 | SubjectID)    7 -8701.22 17416.5  0.0817  2    0.95999 
## (1 | ItemID)                          8 -8733.21 17482.4 64.0637  1 1.2046e-15 

As shown above, the fixed size01 slope is now 𝛾020 = 4.42, whereas it was previously 𝛾020 = 4.43. It, too, 
has changed interpretation: It is now the mean of the subject-specific size01 slopes. The new subject 
random slope variance 𝜏𝑈02𝑆

2  was estimated as 84.45. The subject random slopes were positively 

correlated 𝑟 = 0.07 with the subject random intercepts, indicating that subjects who had slower response 
times to small-neighborhood-size words (i.e., higher intercepts) tended to have slightly more of a 
difference between small- and large-neighborhood-size words (i.e., steeper slopes). 

However, the LRT generated by ranova indicates that the model fit did not improve from adding the new 
random slope variance and covariance, −2𝛥𝐿𝐿(2) = 0.08, 𝑝 = .960, so we will not retain them in our 
model. Even if using a mixture chi-square distribution instead (whose critical value at 𝑝 < .05 for 𝑑𝑓 =
1,2 would be 5.14 instead of 5.99 for 𝑑𝑓 = 2), we would not retain the two new parameters, as shown 
below: 

print("LRT for random slope variance using a mixture-chi-square test") 

## [1] "LRT for random slope variance using a mixture-chi-square test" 

Cond3Diff2LL = -2*(logLik(Cond1)-logLik(Cond3)); Cond3Diff2LL 

## 'log Lik.' 0.081670482 (df=7) 

Cond3DiffP1 = pchisq(Cond3Diff2LL, df=1, lower.tail=FALSE); Cond3DiffP1  

## 'log Lik.' 0.77504626 (df=7) 

Cond3DiffP2 = pchisq(Cond3Diff2LL, df=2, lower.tail=FALSE); Cond3DiffP2 

## 'log Lik.' 0.95998728 (df=7) 

Cond3DiffP12 = (.5*Cond3DiffP1) + (.5*Cond3DiffP2) 
print("Test statistic and mixture p-values for df=1,2")  

## [1] "Test statistic and mixture p-values for df=1,2" 

Cond3Diff2LL; Cond3DiffP12 

## 'log Lik.' 0.081670482 (df=7) 

## 'log Lik.' 0.86751677 (df=7) 
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To get a sense of the degree of slope differences, however, we can still compute a 95% random slope 
confidence interval as follows: 

Subject Random Size Slope 95% CI = 𝛾020 ± 1.96 × √𝜏𝑈02𝑆

2

Subject Random Size Slope 95% CI = 4.42 ± 1.96 × √84.45 = −13.6 to 22.4

 

This indicates the expected variability in how small-neighborhood words differ from large-neighborhood 
words, in which 95% of the sample would be expected to have slopes ranging from negative to positive 
slope. 

Below is how the random effect confidence intervals can be computed using saved output: 

# Print stored fixed effects table for reference 
as.data.frame(fixef(Cond3)) 

##               fixef(Cond3) 
## (Intercept)    615.7995689 
## freq01          70.0007436 
## size01           4.4154652 
## freq01:size01  -72.0237185 

# Save fixed freq01 slope for use below 
Cond3SizeSlp = as.data.frame(fixef(Cond3))[3,1] 
# Print stored variance components table for reference 
as.data.frame(VarCorr(Cond3)) 

##         grp        var1   var2         vcov        sdcor 
## 1    ItemID (Intercept)   <NA>  1692.993504  41.14600228 
## 2 SubjectID (Intercept)   <NA>  5103.812955  71.44097532 
## 3 SubjectID      size01   <NA>    84.446198   9.18946126 
## 4 SubjectID (Intercept) size01    44.183177   0.06730069 
## 5  Residual        <NA>   <NA> 14319.257502 119.66310000 

# Save subject random size01 slope variance for use below 
Cond3SubSizeVar = as.data.frame(VarCorr(Cond3))[3,4]       
print("95% random size01 slope confidence interval for subjects") 

## [1] "95% random size01 slope confidence interval for subjects" 

SubSizeSlp_LCI = Cond3SizeSlp - 1.96*sqrt(Cond3SubSizeVar) 
SubSizeSlp_UCI = Cond3SizeSlp + 1.96*sqrt(Cond3SubSizeVar)  
print("Subject size01 slope lower CI = "); SubSizeSlp_LCI 

## [1] "Subject size01 slope lower CI = " 

## [1] -13.595879 

print("Subject size01 slope upper CI = "); SubSizeSlp_UCI 

## [1] "Subject size01 slope upper CI = " 

## [1] 22.426809 
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Sample Results Section 

The extent to which semantic frequency (coded low = 0, high = 1) and phonological neighborhood size 
(coded small = 0, large = 1) could predict response time (RT) in milliseconds in a lexical decision task was 
examined for 39 items administered to 38 subjects. Because RTs for incorrect responses were not 
included, the data were unbalanced, such that each subject had a different number of trials included for 
each condition. Accordingly, rather than aggregating the individual trial RTs into potentially biased item 
condition means (that would assume items are fixed) and conducting an analysis of variance, all possible 
RTs were examined instead in a multilevel model with crossed random effects for subjects and items, in 
which level-1 trials (i.e., the unique combination of each subject with each item) were nested within level-
2 subjects and within level-2 items (as crossed random factors). Restricted maximum likelihood within 
the R function lmer from the lme4 was used to estimate all models; denominator degrees of freedom were 
estimated with the Satterthwaite method using the package lmerTest. Likelihood ratio tests (i.e., the 
difference in model −2𝐿𝐿 values) were used to evaluate new random effect variances and covariances, in 
which a mixture of 𝜒2 distributions (with the two mixture degrees of freedom given in parentheses 
below) was used to determine the significance of the new random effect variances bounded at 0. 

The extent to which systematic variability in mean RT existed for each dimension of sampling was first 
examined in a series of empty means models (i.e., only a fixed intercept and no predictors). Relative to a 
model with only a residual variance, the addition of a random intercept variance for subjects significantly 
improved model fit, −2𝛥𝐿𝐿(0,1) = 280.4, 𝑝 < .001, indicating significant differences between subjects in 
mean RT, and that trials from the same subject were positively correlated. The addition of a random 
intercept for items also significantly improved model fit, −2𝛥𝐿𝐿(0,1) = 100.4, 𝑝 < .001, indicating 
significant differences between items in mean RT as well, and that trials for the same item were also 
positively correlated. Of the total estimated RT variance, 24% was due to between-subject differences in 
mean RT (given by the subject random intercept), 11% was due to between-item differences in mean RT 
(given by the item random intercept), and the remaining 65% was due to the subject by item interaction 
(i.e., residual variance). Construction of 95% random intercept confidence intervals as described in 
Snijders and Bosker (2012) revealed that 95% of subject mean RTs are expected to fall between 494 and 
776 ms, whereas 95% of the item mean RTs are expected to fall between 539 and 732 ms. Thus, there 
was relatively more variability across subjects than across items. The extent to which the main and 
interaction effects of semantic frequency and neighborhood size could account for between-item 
differences in mean RT was then examined in a conditional model; results are provided in Table 1. 

ANOVA-like description of the results: There was a significant semantic frequency by neighborhood size 
interaction, 𝑡(31.8) = −2.45, 𝑝 = .0199; the pattern of the interaction is shown in Figure 1 and was 
interpreted by examining simple main effects of each predictor. First, with respect to the effect of 
frequency, for small neighborhood words, responses were significantly faster to words of low than high 
frequency (𝑀 = 615.8,𝑀 = 685.8), 𝑡(32.4) = 3.40, 𝑝 = .002, whereas for large neighborhood words, 
there was no significant difference between words of low or high frequency (𝑀 = 620.2,𝑀 = 618.2), 
𝑡(31.2) = −0.096, 𝑝 = .924. Second, with respect to the effect of neighborhood size, for low frequency 
words, there was no significant difference between words with small or large neighborhood size (𝑀 =
615.8,𝑀 = 620.2), 𝑡(31.4) = 0.22, 𝑝 = .829, whereas for high frequency words, responses were 
significantly slower to words with smaller than larger neighborhoods (𝑀 = 685.8,𝑀 = 618.2), 𝑡(32.2) =
−3.20, 𝑝 = .003. 

Regression-like description of the same results, which refer to the linear model equation: The fixed 
intercept for the predicted RT for a word of low frequency and small size was 𝛾000 = 615.8. There was a 
significant simple main effect for the mean difference between low and high frequency words of small 
size of 𝛾010 = 70.0 (𝑝 = .002). There was a nonsignificant simple main effect for the mean difference 
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between small and large size words of low frequency of 𝛾020 = 4.4 (𝑝 = .829). However, there was a 
significant frequency by size interaction of 𝛾030 = −72.0 (𝑝 = .020), such that relative to the frequency 
effect for small words of 𝛾010 = 70.0, the frequency effect for large words was significantly less positive 
by 𝛾030 = −72.0 (yielding a nonsignificant simple effect of frequency for large words of 𝛾010 + 𝛾030 =
−2.0, 𝑝 = .924). Similarly, relative to the size effect for low frequency words of 𝛾010 = 4.4, the size effect 
for high frequency words was significantly more negative by 𝛾030 = −72.0 (yielding a significant simple 
effect of size for high frequency words of 𝛾020 + 𝛾030 = −67.56, 𝑝 = .003). Thus, as shown in Figure 1, a 
positive frequency effect was found only for words of small size, and a negative size effect was found only 
for high frequency words. 

The effects of frequency and size explained approximately 30% of the item intercept variance. Given that 
11% of the total RT variance was due to mean differences between items, this translates into a total 
reduction in all RT variance of 3.28%. The extent to which these effects were sufficient to describe all 
between-item differences in mean RT was then examined by removing the item random intercept 
variance from the conditional model. The resulting significant decrease in model fit, −2𝛥𝐿𝐿(1) = 64.4, 
𝑝 < .001, suggesting that significant differences remain between items after controlling for their primary 
design features, or that items should not be treated as fixed effects. 

Finally, the potential for individual subject differences in the frequency slope was examined by adding a 
random subject frequency slope (and its covariance with the subject random intercept) to the model. 
Model fit did not significantly improve, −2𝛥𝐿𝐿(1,2) = 4.87, 𝑝 = .057, indicating that each subject does 
not need their own random deviation from the fixed effect of frequency. Likewise, the potential for 
individual subject differences in the neighborhood size slope was examined by adding a random subject 
size slope (and its covariance with the subject random intercept) to the model. Model fit did not 
significantly improve, −2𝛥𝐿𝐿(1,2) = 0.08, 𝑝 = .867, indicating that each subject does not need their own 
random deviation from the fixed effect of size, either. 


