Two-Level Models for Cross-Classified Data

- Topics:
 - Cross-sectional cross-classification (time-invariant groups)
 - Longitudinal cross-classification (time-varying groups)
 - > No smushing allowed in cross-classified models, either

More Complex Multilevel Designs

- Multilevel models are specified based on the relevant dimensions by which observations differ each other, and how the units are organized
- Two-level models have at least two piles of variance, in which level-1 units are nested within level-2 units:
 - > Longitudinal Data: Occasions nested within Persons
 - > Clustered Data: Students nested within Teachers
- Three-level models have at least three piles of variance, in which level-2 units are nested within level-3 units (stay tuned):
 - > Longitudinal Data: Occasions nested within Persons within Families
 - Clustered Data: Students nested within Teachers within Schools
- In other designs, multiple sources of systematic variation may be present, but the sampling may be crossed instead...
 - Models with crossed random effects are known as "cross-classified" models in the context of clustered data
 - > Here are a few examples on when this might happen...

Kids, Schools, and Neighborhoods

- Kids are nested within schools AND within neighborhoods
- Not all kids from same neighborhood live in same school, so schools and neighborhoods are crossed at level 2
- Can include predictors for each source of variation

Kids, Schools, and Neighborhoods

\rightarrow fixed intercept (all x's = 0)				
d				
C				

Because cross-classified models have two types of level-2 units, it can be much easier to write a single, composite equation

Time (t), Students (s), and Classes (c)

- Students are nested within Classes at each occasion...
- But if students move into different classes across time...
 - > Time at level 1 is nested within Student AND within Classes
 - Student is crossed with Class at level 2
- How to model a time-varying random classroom effect?
 - > This is the basis of so-called "value-added models"
- (At least) Two options via fixed or random effects:
 - > Acute effect: Effect for class operates only when kids are in the class
 - e.g., Class effect \leftarrow teacher bias
 - Once a student is out of the class, class effect is no longer present
 - > Transfer effect: Effect for class operates now and in the future...
 - e.g., Class effect \leftarrow differential learning
 - Effect stays with the student in the future (i.e., a "layered" value-added model)

Time (t), Students (s), and Classes (c)

- Custom-built intercepts for time-varying effects of classes
 - > An intercept is usually a column of 1's, but ours will be 0's and 1's to serve as switches that turn on/off class effects

				Per-Y (-99	ear Cl = mis	ass ID ssing)	Intercepts for Acute Effects			Intercepts for Transfer Effects		
Student ID	Class ID	Grade	Year	Year 0 Class	Year 1 Class	Year 2 Class	Year 0 Intercept	Year 1 Intercept	Year 2 Intercept	Year 0 Effect	Year 1 Effect	Year 2 Effect
101	1	3	0	1	-99	43	1	0	0	1	0	0
101	-99	4	1	1	-99	43	0	0	0	0	0	0
101	43	5	2	1	-99	43	0	0	1	1	0	1
102	3	3	0	3	21	42	1	0	0	1	0	0
102	21	4	1	3	21	42	0	1	0	1	1	0
102	42	5	2	3	21	42	0	0	1	1	1	1

Time (t), Students (s), and Classes (c)

• Hoffman (2015) Equation 11.3: fixed effects model for class as a categorical time-varying predictor:

> Allows for control of classes only....

$$\begin{split} \text{Effort}_{\text{tsc}} &= \gamma_{000} + \gamma_{100} \left(\text{Year01}_{\text{tsc}} \right) + \gamma_{200} \left(\text{Year12}_{\text{tsc}} \right) + \text{U}_{0s0} + \text{e}_{\text{tsc}} \\ &+ \gamma_{001}^{0} \left(\text{Class1}_{c} \right) \left(\text{Int0}_{\text{tsc}} \right) + \gamma_{002}^{0} \left(\text{Class2}_{c} \right) \left(\text{Int0}_{\text{tsc}} \right) \cdots + \gamma_{00C}^{0} \left(\text{ClassC}_{c} \right) \left(\text{Int0}_{\text{tsc}} \right) \\ &+ \gamma_{001}^{1} \left(\text{Class1}_{c} \right) \left(\text{Int1}_{\text{tsc}} \right) + \gamma_{002}^{1} \left(\text{Class2}_{c} \right) \left(\text{Int1}_{\text{tsc}} \right) \cdots + \gamma_{00C}^{1} \left(\text{ClassC}_{c} \right) \left(\text{Int1}_{\text{tsc}} \right) \\ &+ \gamma_{001}^{2} \left(\text{Class1}_{c} \right) \left(\text{Int2}_{\text{tsc}} \right) + \gamma_{002}^{2} \left(\text{Class2}_{c} \right) \left(\text{Int2}_{\text{tsc}} \right) \cdots + \gamma_{00C}^{2} \left(\text{ClassC}_{c} \right) \left(\text{Int2}_{\text{tsc}} \right) \end{split}$$

- Hoffman (2015) Equation 11.4: class as a random effects crossed with students at level 2:
 - > Controls and models class-related variance so it can be predicted Effort_{tsc} = $\gamma_{000} + \gamma_{100}$ (Year 01_{tsc}) + γ_{200} (Year 12_{tsc}) + U_{0s0} + e_{tsc}

$$+ U_{00c}^{0} (Int0_{tsc}) + U_{00c}^{1} (Int1_{tsc}) + U_{00c}^{2} (Int2_{tsc})$$

More on Cross-Classified Models

- In crossed models, lower-level predictors can have random slopes of over higher levels AND random slopes of the other crossed factor at the same level
 - > Example: Kids, Schools, and Neighborhoods (data permitting)
 - Kid effects could vary over schools AND/OR neighborhoods
 - School effects could vary over neighborhoods (both level 2)
 - Neighborhood effects could vary over schools (both level 2)
- Concerns about smushing still apply over both level-2's
 - Separate contextual effects of kid predictors for schools and neighborhoods (e.g., after controlling for how smart you are, it matters incrementally whether you go to a smart school AND if you live in a neighborhood with smart kids)