PSQF 7375 Clustered Example 8 page 1 Three Level Models for Longitudinal Twin Data (Time within Twin within Pair)

The data for this example come from the Octogenarian Twin Study of Aging, a longitudinal study. These models include 351 same-sex twin pairs initially age 79-100 years measured for up to four occasions every two years, over six possible years. We will be examining change over time in a measure of crystallized intelligence (information test), as well the extent of heritability (i.e., differences between MZ and DZ twins) in intercepts and change over time. These data are already stacked such that one row contains the data for one occasion for one person. The ID variables PairID and TwinID index which twin pair and which twin (1 or 2), respectively. Time is not balanced across persons, so REPEATED will not be used until we get to the heritability models (i.e., that include different variances by zygosity).

Model 1a: Empty Means, Two-Level Model for Information Test Outcome

	odel has two variance components: level-1 residual and level-2 random intercept. It s that all people are independent (i.e., it does not account for twin pair membership).					
<pre>TITLE "SAS Model 1a: Empty Means, Two-Level Model for Information Test Outcome"; PROC MIXED DATA=work.Example8 NOCLPRINT COVTEST NAMELEN=100 IC METHOD=REML; CLASS PairID TwinID; MODEL info = / SOLUTION DDFM=Satterthwaite; RANDOM INTERCEPT / VCORR TYPE=UN SUBJECT=PairID*TwinID; * Level 2+3 combined; ODS OUTPUT InfoCrit=Fit2L; * Save fit stats for LRT; RUN;</pre>						
<pre>mixed info , Case: , variand estat ic, n(702) // G</pre>	Two-Level Model for Information Test Outcome ce reml covariance(un) dfmethod(satterthwaite) dftable(pvalue) iving STATA highest-level sample size to use for BIC equesting intraclass correlation Case is a person-level ID variable needed just for this model in STATA.					

```
SAS output:
```

	Dimensions						
Covariance H	Parameters		2				
Columns in X	x		1				
Columns in Z	Z Per Subje	ct	1			г	
Subjects			702 \rightarrow numb	ber of perso	ns so far		Calculate the ICC for the
Max Obs Per	Subject		4				proportion of between-person variation in Info:
	C	ovariance	Parameter	Estimates			
				Standard	Z		136.53
Cov Parm	Subject	E	stimate	Error	Value	Pr > Z	$ICC = \frac{136.53}{136.53 + 23.92} = .85$
UN(1,1)	PairID*Tw	inID	136.53	8.5293	16.01	<.0001	
Residual			23.9167	1.0694	22.36	<.0001	The "Null Model" LRT below
Null Mode	l Likelihoo	d Ratio Te	est				tells us that the random intercept variance is significantly greater
DF Cł	hi-Square	Pr > (ChiSq				than 0, and thus so is the ICC for
1	1333.46	<	.0001				the correlation of occasions
							within persons (and pairs).
		Info	rmation Cri	teria		L	
Neg2LogLike	Parms	AIC	AICC	HQIC	BIC	CAIC	
11389.5	2	11393.5	11393.5	11397.0	11402.6	11404.6	
	Sol	ution for	Fixed Effe	cts			
		Standaı	rd				
Effect	Estimate	Erro	or DF	t Value	Pr > t		
Intercept	25.5469	0.49	1 605	52.02	<.0001		

Model 1b: Empty Means, Three-Level Model for Information Test Outcome

Level 1: $\text{Info}_{tij} = \beta_{0ij} + e_{tij}$ Level 2: $\beta_{0ij} = \delta_{00j} + U_{0ij}$ Level 3: $\delta_{00j} = \gamma_{000} + V_{00j}$ This model now has 3 variance components: level-1 residual, level-2 twin random intercept, and level-3 pair random intercept. It now allows a correlation between people from the same twin pair.	
<pre>TITLE "SAS Model 1b: Empty Means, Three-Level Model for Information Test Outcome"; PROC MIXED DATA=work.Example8 NOCLPRINT COVTEST NAMELEN=100 IC METHOD=REML; CLASS PairID TwinID; MODEL info = / SOLUTION DDFM=Satterthwaite; RANDOM INTERCEPT / TYPE=UN SUBJECT=PairID; * Level 3; RANDOM INTERCEPT / TYPE=UN SUBJECT=PairID*TwinID; * Level 2; ODS OUTPUT InfoCrit=Fit3L CovParms=CovEmpty; * Save for LRT, Pseudo-R2; RUN; * Compare three-level empty to two-level empty; %FitTest(FitFewer=Fit2L, FitMore=Fit3L);</pre>	
<pre>* STATA Model 1b: Empty Means, Three-Level Model for Information Test Outcome mixed info , PairID: , covariance(unstructured) ///</pre>	
estimates store ThreeLevel	
Irtest ThreeLevel TwoLevel TwinID is sufficient for level 2 here because STATA assumes	
SAS output:any random effects written after the first are nested within the first, whereas SAS does not. I am not requesting ICC from	
STATA because it gives L3/total instead of L3/ L2+L3.	
Dimensions	
Covariance Parameters 3	
Columns in X 1	
Columns in Z Per Subject3Subjects351 → now number of twin pairs (families)	
Max Obs Per Subject $8 \rightarrow$ per twin pair (4 occasions * 2 persons)	
Covariance Parameter Estimates	
Standard Z	
Cov Parm Subject Estimate Error Value Pr > Z	
UN(1,1) PairID 87.2970 9.9794 8.75 <.0001 → level-3 between-pair UN(1,1) PairID*TwinID 49.9360 5.3371 9.36 <.0001 → level-2 within-pair	
Residual $23.9684 1.0735 22.33 <.0001 \rightarrow \text{level-2 within-part}$	
Information Criteria	
Neg2LogLike Parms AIC AICC HQIC BIC CAIC	
11278.1 3 11284.1 11284.1 11288.7 11295.7 11298.7 Solution for Fixed Effects Standard	
Effect Estimate Error DF t Value Pr > t	
Intercept 25.2203 0.6017 331 41.92 <.0001	
	7
Likelihood Ratio Test for Fit2L vs. Fit3L Neg2Log Is the 3-level model a better fit than the 2-level model? $Yes, -2\Delta LL(\sim l) = 111.37, p < .001$	
Name Like Parms AIC BIC DevDiff DFdiff Pvalue	
Fit2L 11389.5 2 11393.5 11402.6 . . . 5it0l 11070.4 0 11005.7 111.070.4 0	
Fit3L 11278.1 3 11284.1 11295.7 111.373 1 0	
Proportion variance at each level: Total = $87.30 + 49.94 + 23.97 = 161.20$ Level 3 (pair) = $87.30 / 161.20 = .54$ Level 2 (person) = $49.94 / 161.20 = .31$ ICC _{L2} for time within person and pair = $(87.30 + 49.94) / (161.20) = .85$ ICC _{L3} for person within pair = $87.30 / (87.30 + 49.94) = .64$ TOTAL = $87.30 / 161.20 = .54$ Level 2 (person) = $49.94 / 161.20 = .31$	
Level 1 (time) = $23.97 / 161.20 = .15$ This ICC = .64 is significantly greater than 0 via $-2\Delta LL$ for 3- vs. 2-1	evel.

Now let's do the same thing for our time-varying predictor of age:

```
TITLE "SAS Age Model: Empty Means, Three-Level Model for Age Predictor";
PROC MIXED DATA=work.Example8 NOCLPRINT COVTEST NAMELEN=100 IC METHOD=REML;
CLASS PairID TwinID;
MODEL age = / SOLUTION DDFM=Satterthwaite;
RANDOM INTERCEPT / TYPE=UN SUBJECT=PairID; * Level 3;
RANDOM INTERCEPT / TYPE=UN SUBJECT=PairID*TwinID; * Level 2; RUN;
* STATA Age Model: Empty Means, Three-Level Model for Age Predictor
mixed age , || PairID: , covariance(unstructured) ///
|| TwinID: , covariance(unstructured) variance reml ///
dfmethod(satterthwaite) dftable(pvalue),
```

SAS output:

	Cov	ariance Para	meter Estimat Standard	zes Z	Because there is no age variance at level 2, age will be a predictor at levels 1 and 3 only.
Cov Parm	Subject	Estimate	Error	Value	Pr > Z
UN(1,1)	PairID	8.5256	0.7193	11.85	<.0001 level-3 between-pair = 63%
UN(1,1)	PairID*TwinID	0			. level-2 within-pair = 0%
Residual		4.9682	0.1693	29.35	<.0001 level-1 within-person = 37%

Below we create our predictors: level-1 (time-varying) age will be time-in-study (0=baseline), and level-3 (betweenpair) age will be baseline age centered at 85 years. This creates a clear demarcation of age at baseline as the crosssectional effect of age, and time-in-study as the longitudinal effect of age.

SAS Data Manipulation:

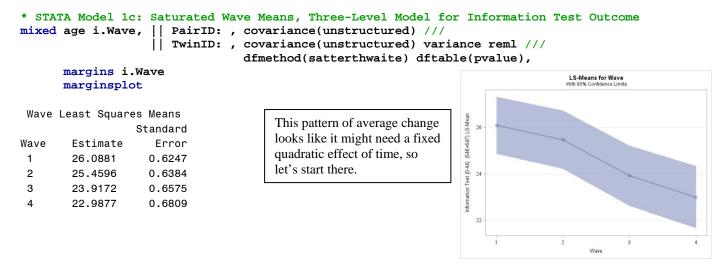
```
DATA work.Example8; SET work.Example8;
```

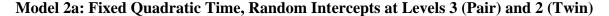
- * Centering age at time 1 at 85 to use at level 3;
- BFage85 = agew1 85; LABEL BFage85= "BFage85: Age at Time1 (0=85)"; * Within-person centering age at level-1 (VARIABLE-BASED CENTERING);
- time = age agew1; LABEL time= "time: Time Since Entry (0= Age Wave 1)";
- * Make string version of zygosity for easier output reading;
- IF zygosity=1 THEN zyg="MZ"; IF zygosity=2 THEN zyg="DZ"; * Selecting only cases with complete data;
- IF NMISS(agew1, age, info)>0 THEN DELETE; RUN;

STATA Data Manipulation:

- * Centering age at time 1 at 85 to use at level 3 gen BFage85 = agew1 - 85 label variable BFage85 "BFage85: Age at Time1 (0=85)"
- * Within person centering age at level-1 (VARIABLE-BASED CENTERING) gen time = age - agewl

```
label variable time "time: Time since entry (0= Age Wave 1)"
* Recode zygosity so 0=DZ, 1=MZ, will be treated as numeric
```


```
gen zyg = zygosity-1
```


* Selecting only cases with complete data
egen nummiss = rowmiss(agew1 age, info)
drop if nummiss>0

Model 1c: Saturated Means for Wave, Random Intercepts at Levels 2 and 3

Using SAS GLIMMIX instead of SAS MIXED to get a means plot directly

```
TITLE "SAS Model 1c: Saturated Wave Means, Three-Level Model for Information Test Outcome";
PROC GLIMMIX DATA=work.Example8a NOCLPRINT NAMELEN=100 METHOD=RSPL; * Same as REML;
CLASS PairID TwinID Wave;
MODEL info = Wave / SOLUTION DDFM=Satterthwaite;
RANDOM INTERCEPT / TYPE=UN SUBJECT=PairID; * Level 3;
RANDOM INTERCEPT / TYPE=UN SUBJECT=PairID*TwinID; * Level 2;
LSMEANS Wave / PLOT=MEANPLOT(CLBAND JOIN); RUN; * Print and plot means;
```



```
Level 1: Info<sub>tij</sub> = \beta_{0ij} + \beta_{1ij} (Age_{tij} - PairAgel_j) + \beta_{2ij} (Age_{tij} - PairAgel_j)^2 + e_{tij}
Level 2:
                    \beta_{0ii} = \delta_{00i} + U_{0ii}
  Intercept:
                    \beta_{1ii} = \delta_{10i}
  Linear Time:
  Quadratic Time: \beta_{2ij} = \delta_{20j}
Level 3:
  Intercept:
                    \delta_{00i} = \gamma_{000} + V_{00i}
                    \delta_{10i} = \gamma_{100}
  Linear Time:
  Quadratic Time: \delta_{20i} = \gamma_{200}
TITLE "SAS Model 2a: Fixed Quadratic Time, Random Intercepts for Pair and Twin";
PROC MIXED DATA=work.Example8a NOCLPRINT COVTEST NAMELEN=100 IC METHOD=REML;
     CLASS PairID TwinID;
     MODEL info = time time*time / SOLUTION DDFM=Satterthwaite;
     RANDOM INTERCEPT / TYPE=UN SUBJECT=PairID;
                                                                        * Level 3;
     RANDOM INTERCEPT / TYPE=UN SUBJECT=PairID*TwinID;
                                                                        * Level 2;
     ODS OUTPUT InfoCrit=Fit_RI2_RI3 CovParms=CovFQuad; * Save for LRT, pseudo-R2; RUN;
* Pseudo-R2 for time;
%PseudoR2(Ncov=3, CovFewer=CovEmpty, CovMore=CovFQuad);
* STATA Model 2a: Fixed Quadratic Time, Random Intercepts for Pair and Twin
mixed info c.time c.time#c.time ,
        || PairID: , covariance(unstructured) ///
        || TwinID: , covariance(unstructured) variance reml ///
                       dfmethod(satterthwaite) dftable(pvalue),
        estimates store RI2_RI3
```

SAS output:

	Covaria	nce Parameter	• Estimates Standard	Z		The level-1 fixed linear and quadratic effects of time
Cov Parm	Subject	Estimate	Error	Value	Pr > Z	explained 8.33% of the level-1
UN(1,1)	PairID	88.0484	10.1556	8.67	<.0001	residual variance. The level-2
UN(1,1)	PairID*TwinID	52.9334	5.5159	9.60	<.0001	twin intercept variance
Residual		21.9701	0.9854	22.30	<.0001	increased as a consequence.

		Informa	ation Cri	teria				
Neg2LogLike	Parms	AIC	AICC	HQIC	BIC	CAIO)	
11211.6	3	11217.6	11217.6	11222.2	11229.2	11232.2	2	
	Solı	ution for Fix	ed Effec	ts				
		Standard						
Effect	Estimate	Error	DF	t Value	Pr > t			
Intercept	26.1212	0.6233	369	41.91	<.0001			
time	-0.3216	0.1834	1040	-1.75	0.0797			
time*time	-0.03673	0.03077	1027	-1.19	0.2329			
PsuedoR2 (%	Reduction)	for CovEmpty	/ vs. Cov	FQuad				
Name	CovParm	Subject	Es	timate	StdErr	ZValue	ProbZ	PseudoR2
CovEmpty	UN(1,1)	PairID	8	37.2970	9.9794	8.75	<.0001	
CovEmpty	UN(1,1)	PairID*Twir	nID 4	9.9360	5.3371	9.36	<.0001	
CovEmpty	Residual		2	3.9684	1.0735	22.33	<.0001	
CovFQuad	UN(1,1)	PairID	8	8.0484	10.1556	8.67	<.0001	-0.008607
CovFQuad	UN(1,1)	PairID*Twir	nID 5	62.9334	5.5159	9.60	<.0001	-0.060025
CovFQuad	Residual		2	1.9701	0.9854	22.30	<.0001	0.083373

Model 2b: Fixed Quadratic Time, Random Linear Time Slope at Level 2

Level 1: Info_{tij} = $\beta_{0ij} + \beta_{1ij} (Age_{tij} - PairAgel_j) + \beta_{2ij} (Age_{tij} - PairAgel_j)^2 + e_{tij}$ Level 2: $\beta_{0ij} = \delta_{00j} + U_{0ij}$ Intercept: $\beta_{1ij} = \delta_{10j} + U_{1ij}$ Linear Time: Quadratic Time: $\beta_{2ij} = \delta_{20j}$ Level 3: $\delta_{00i} = \gamma_{000} + V_{00i}$ Intercept: $\delta_{10i} = \gamma_{100}$ Linear Time: Quadratic Time: $\delta_{20j} = \gamma_{200}$ TITLE "SAS Model 2b: Add Random Linear Time for Twin"; PROC MIXED DATA=work.Example8a NOCLPRINT COVTEST NAMELEN=100 IC METHOD=REML; CLASS PairID TwinID; MODEL info = time time * time / SOLUTION DDFM=Satterthwaite; RANDOM INTERCEPT / TYPE=UN SUBJECT=PairID; * Level 3; RANDOM INTERCEPT time / TYPE=UN SUBJECT=PairID*TwinID; * Level 2; ODS OUTPUT InfoCrit=Fit_RL2_RI3; * Save for LRT, pseudo-R2; RUN; * Test random linear time at level 2; %FitTest(FitFewer=Fit_RI2_RI3, FitMore=Fit_RL2_RI3); * STATA Model 2b: Add Random Linear Time for Twin mixed info c.time c.time#c.time , | PairID: , covariance(unstructured) /// || TwinID: time , covariance(unstructured) variance reml /// dfmethod(satterthwaite) dftable(pvalue), estimates store RL2_RI3 lrtest RI2_RI3 RL2_RL3 Covariance Parameter Estimates Standard Ζ Pr Z Cov Parm Subject Estimate Error Value UN(1,1) PairID 85.7639 9.7835 8.77 <.0001 \rightarrow level-3 intercept var UN(1,1) PairID*TwinID 47.6649 5.2082 9.15 <.0001 \rightarrow level-2 intercept var PairID*TwinID 1.6668 0.8848 1.88 $0.0596 \rightarrow$ level-2 int-linear cov UN(2,1) <.0001 \rightarrow level-2 linear time var UN(2,2)PairID*TwinID 1.5662 0.2151 7.28 Residual 13.5083 0.8175 16.52 <.0001 \rightarrow level-1 residual var

		Inform	ation Cri [.]	teria			-	Ĩ
Neg2LogLike	Parms	AIC	AICC	HQIC	BIC	CAIC		
11075.1	5	11085.1	11085.1	11092.7	11104.4	11109.4		
	Solu	ition for Fi	xed Effec	ts				
		Standard						
Effect	Estimate	Error	DF	t Value	Pr > t			
Intercept	26.1799	0.5991	338	43.70	<.0001			
time	-0.3147	0.1583	929	-1.99	0.0471			
time*time	-0.07075	0.02571	722	-2.75	0.0061			
Likelihood	Ratio Test f Neg2Log	or Fit_RI2_	RI3 vs. F	it_RL2_RI3			m linear time <i>52, p < .001</i>	slope for twin?
Name	Like	Parms	AIC	BIC	DevDiff	DFdiff	Pvalue	
Fit_RI2_RI3	11211.6	3	11217.6	11229.2				
Fit_RL2_RI3	11075.1	5	11085.1	11104.4	136.518	2	0	

Model 2c: Fixed Quadratic, Random Linear Slope at Levels 2 and 3

```
TITLE "SAS Model 2c: Add Random Linear Time for Pair";
PROC MIXED DATA=work.Example8a NOCLPRINT COVTEST NAMELEN=100 IC METHOD=REML;
     CLASS PairID TwinID;
     MODEL info = time time * time / SOLUTION DDFM=Satterthwaite;
     RANDOM INTERCEPT time / TYPE=UN SUBJECT=PairID;
                                                            * Level 3;
     RANDOM INTERCEPT time / TYPE=UN SUBJECT=PairID*TwinID; * Level 2;
     ODS OUTPUT InfoCrit=Fit_RL2_RL3; * Save for LRT, pseudo-R2; RUN;
* Test random linear time at level 3;
%FitTest(FitFewer=Fit_RL2_RI3, FitMore=Fit_RL2_RL3);
* STATA Model 2c: Add Random Linear Time for Pair
mixed info c.time c.time#c.time ,
      || PairID: time, covariance(unstructured) ///
      || TwinID: time, covariance(unstructured) variance reml ///
                      dfmethod(satterthwaite) dftable(pvalue),
      estimates store RL2_RL3
```

```
lrtest RL2_RL3 RL2_RI3
```

	4.				_	1 bQ1 7575 Clustered Example 6 page 7
SAS outpu		ariance Pa		stimates tandard	z	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Cov Parm	Subject	Esti	mate	Error	Value	Pr Z
UN(1,1)	PairID	85.	4911	9.8263	8.70	<.0001 \rightarrow level-3 intercept var
UN(2,1)	PairID	0.	2432	1.0615	0.23	0.8188 \rightarrow level-3 int-linear cov
UN(2,2)	PairID	0.	1066	0.2203	0.48	0.3143 \rightarrow level-3 linear time var
UN(1,1)	PairID*Twin	ID 47.	7968	5.2453	9.11	<.0001 \rightarrow level-2 intercept var
UN(2,1)	PairID*Twin	ID 1.	5559	0.9849	1.58	0.1142 → level-2 int-linear cov
UN(2,2)	PairID*Twin	ID 1.	4534	0.3050	4.77	<.0001 \rightarrow level-2 linear time var
Residual		13.	5251	0.8191	16.51	<.0001 \rightarrow level-1 residual var
Information Cr				teria		
Neg2LogLike	Parms	AIC	AICC	HQIC	В	IC CAIC
11074.8	7	11088.8	11088.8	11099.5	11115	.8 11122.8
	Solut	ion for Fi Standard	xed Effec	ts		
Effect	Estimate	Error	DF	t Value	Pr >	t
Intercept	26.1810	0.5987	336	43.73	<.00	01
time	-0.3181	0.1589	860	-2.00	0.04	55
time*time	-0.07055	0.02573	721	-2.74	0.00	52
Likelihood F	atio Test for Neg2Log	r Fit_RL2_	RI3 vs. F	it_RL2_RL3		teed the random linear slope for pair, too? $2\Delta LL(\sim 2) = 0.29, p = .86$
Name	Like	Parms	AIC	BIC	DevDi	ff DFdiff Pvalue
Fit_RL2_RI3	11075.1	5	11085.1	11104.4		
Fit_RL2_RL3	11074.8	7	11088.8	11115.8	0.290	30 2 0.86468

I then tested random quadratic time slopes at the twin and pair levels, but neither was significant. Given our interest in examining heritability of intercept and time slopes, we will retain the nonsignificant random linear time slope at level 3 (pairs) for now. So we continue by adding level-3 baseline age as a predictor of intercept and linear slope differences.

Model 3a: Add Baseline Age as a Predictor of Pair-Level Intercept and Time Slope Differences

Level 1: $Info_{tij} = \beta$	$\beta_{0ij} + \beta_{1ij} \left(Age_{tij} - PairAgel_{j} \right) + \beta_{2ij} \left(Age_{tij} - PairAgel_{j} \right)^{2} + e_{tij}$
Level 2:	
Intercept:	$\beta_{0ij} = \delta_{00j} + U_{0ij}$
Linear Time:	$\beta_{1ij} = \delta_{10j} + U_{1ij}$
Quadratic Time:	$\beta_{2ij} = \delta_{20j}$
Level 3:	↓ ↓
Intercept:	$\delta_{00j} = \gamma_{000} + \gamma_{001} (\text{PairAgel}_{j} - 85) + V_{00j}$
Linear Time:	$\delta_{10j} = \gamma_{100} + \gamma_{101} (PairAgel_j - 85) + V_{10j}$
Quadratic Time:	$\delta_{20i} = \gamma_{200}$

```
TITLE "SAS Model 3a: Add Baseline Age as Predictor of Pair Intercepts and Linear Time Slopes";
PROC MIXED DATA=work.Example8a NOCLPRINT COVTEST NAMELEN=100 IC METHOD=REML;
CLASS PairID TwinID;
MODEL info = time time*time BFage85 time*BFage85 / SOLUTION DDFM=Satterthwaite;
RANDOM INTERCEPT time / TYPE=UN SUBJECT=PairID; * Level 3;
RANDOM INTERCEPT time / TYPE=UN SUBJECT=PairID*TwinID; * Level 2;
CONTRAST "Trajectory Diffs by Age" BFage85 1, time*Bfage85 1 / CHISQ;
ODS OUTPUT InfoCrit=Fit_Age CovParms=Cov_Age; * Save for LRT, pseudo-R2; RUN;
* Pseudo-R2 for age; %PseudoR2(Ncov=7, CovFewer=Cov_RL2_RL3, CovMore=Cov_Age);
```

SAS output:

StandardZCov ParmSubjectEstimateErrorValuePr ZUN(1,1)PairID78.79089.30178.47<.0001UN(2,1)PairID-0.024151.0154-0.020.9810UN(2,2)PairID0.072340.21930.330.3707UN(1,1)PairID*TwinID47.60895.21589.13<.0001	
UN(1,1)PairID78.79089.30178.47<.0001UN(2,1)PairID-0.024151.0154-0.020.9810UN(2,2)PairID0.072340.21930.330.3707	
UN(2,1) PairID -0.02415 1.0154 -0.02 0.9810 UN(2,2) PairID 0.07234 0.2193 0.33 0.3707	
UN(2,2) PairID 0.07234 0.2193 0.33 0.3707	
UN(1,1) PairID*TwinID 47.6089 5.2158 9.13 <.0001	
UN(2,1) PairID*TwinID 1.6686 0.9812 1.70 0.0890	
UN(2,2) PairID*TwinID 1.4534 0.3052 4.76 <.0001	
Residual 13.5712 0.8236 16.48 <.0001	
Information Criteria	
Neg2LogLike Parms AIC AICC HQIC BIC CAIC	
11056.3 7 11070.3 11070.4 11081.1 11097.4 11104.4	
Solution for Fixed Effects	
Standard The level-3 main effect of age and	its
Effect Estimate Error DF t Value $Pr > t $ interaction with time explained 7.8	4%
Intercept 24.8887 0.6473 345 38.45 <.0001 and 32.11% of the level-3 pair intercept	
time -0.4284 0.1681 892 -2.55 0.0110 and time slope variance, respective	ly. I
time*time -0.07124 0.02580 717 -2.76 0.0059 also tried quadratic effects of age i	
BFage85 -0.8602 0.1864 348 -4.61 <.0001 predicting the intercept and linear t	
time*BFage85 -0.05655 0.03089 267 -1.83 0.0683 slope, but neither was significant.	
Contrasts	
Num Den	
Label DF DF Chi-Square F Value Pr > ChiSq Pr > F	
Trajectory Diffs by Age 2 302 25.80 12.90 <.0001 <.0001	
PsuedoR2 (% Reduction) for Cov_RL2_RL3 vs. Cov_Age	
Name CovParm Subject Estimate StdErr ZValue ProbZ PseudoR2	
Cov_RL2_RL3 UN(1,1) PairID 85.4911 9.8263 8.70 <.0001 .	
$Cov_RL2_RL3 = UN(2,2)$ PairID 0.1066 0.2203 0.48 0.3143 .	
Cov_RL2_RL3 UN(1,1) PairID*TwinID 47.7968 5.2453 9.11 <.0001 .	
Cov_RL2_RL3 UN(2,2) PairID*TwiNID 1.4534 0.3050 4.77 <.0001 .	
Cov_RL2_RL3 Residual 13.5251 0.8191 16.51 <.0001 .	
Cov_Age UN(1,1) PairID 78.7908 9.3017 8.47 <.0001 0.07837	
Cov Age UN(2,2) PairID 0.07234 0.2193 0.33 0.3707 0.32109	
Cov_Age UN(1,1) PairID*TwinID 47.6089 5.2158 9.13 <.0001 0.00393	
Cov_Age UN(2,2) PairID*TwinID 1.4534 0.3052 4.76 <.0001 -0.00003	
Cov_Age Residual 13.5712 0.8236 16.48 <.0001 -0.00340	

Pr > F

0.0253

0.0234

2.83

11.30

```
Model 3b: Add Zygosity as a Predictor of Pair-Level Intercept and Time Slope Differences
```

```
Level 1: Info<sub>tij</sub> = \beta_{0ij} + \beta_{1ij} (Age_{tij} - PairAgel_j) + \beta_{2ij} (Age_{tij} - PairAgel_j)^2 + e_{tij}

Level 2:

Intercept: \beta_{0ij} = \delta_{00j} + U_{0ij}

Linear Time: \beta_{1ij} = \delta_{10j} + U_{1ij}

Quadratic Time: \beta_{2ij} = \delta_{20j}

Level 3:

Intercept: \delta_{00j} = \gamma_{000} + \gamma_{001} (PairAgel_j - 85) + \gamma_{002} (MZvDZ_j) + \gamma_{003} (PairAgel_j - 85) (MZvDZ_j) + V_{00j}

Linear Time: \delta_{10j} = \gamma_{100} + \gamma_{101} (PairAgel_j - 85) + \gamma_{102} (MZvDZ_j) + \gamma_{103} (PairAgel_j - 85) (MZvDZ_j) + V_{10j}

Quadratic Time: \delta_{20j} = \gamma_{200}
```

```
TITLE "SAS Model 3b: Add Zygosity as Predictor of Pair Intercepts and Linear Time Slopes";
PROC MIXED DATA=work.Example8a NOCLPRINT COVTEST NAMELEN=100 IC METHOD=REML;
    CLASS PairID TwinID zyg;
    MODEL info = time time*time BFage85 time*BFage85
                  zyg zyg*time zyg*BFage85 zyg*time*BFage85 / SOLUTION DDFM=Satterthwaite;
    RANDOM INTERCEPT time / TYPE=UN SUBJECT=PairID;
                                                        * Level 3;
    RANDOM INTERCEPT time / TYPE=UN SUBJECT=PairID*TwinID; * Level 2;
CONTRAST "Diffs by Zyg" zyg -1 1, time*zyg -1 1, BFage85*zyg -1 1, time*BFage85*zyg -1 1 / CHISQ;
ODS OUTPUT InfoCrit=Fit_Zyg CovParms=Cov_Zyg; * Save for LRT, pseudo-R2; RUN;
* Pseudo-R2 for zygosity;
%PseudoR2(Ncov=7, CovFewer=Cov_Age, CovMore=Cov_Zyg);
* STATA Model 3b: Add Zygosity as Predictor of Pair Intercepts and Linear Time Slopes
mixed info c.time c.time#c.time c.BFage85 c.time#c.BFage85 ///
          c.zyg c.zyg#c.time c.zyg#c.BFage85 c.zyg#c.time#c.BFage85, ///
      || PairID: time , covariance(unstructured) ///
      || TwinID: time , covariance(unstructured) variance reml ///
                       dfmethod(satterthwaite) dftable(pvalue),
      // Trajectory diffs by zygosity
      test (c.zyg=0) (c.zyg#c.time=0) (c.zyg#c.BFage85=0) (c.zyg#c.time#c.BFage85=0)
```

```
estimates store Fit_Zyg
```

Trajectory Diffs by Zygosity

SAS output:

	Cova	ariance Para	meter Est	imates				
			Sta	indard	Z			
Cov Parm	Subject	Estima	te	Error	Value	Pr Z		
UN(1,1)	PairID	76.98	15 9	.2255	8.34	<.0001		
UN(2,1)	PairID	0.19	52 1	.0214	0.19	0.8484		
UN(2,2)	PairID	0.073	85 0	.2177	0.34	0.3672		
UN(1,1)	PairID*Twin]	ID 47.81	76 5	.2339	9.14	<.0001		
UN(2,1)	PairID*Twin]	ID 1.65	38 0	.9833	1.68	0.0926		
UN(2,2)	PairID*Twin]	ID 1.44	64 0	.3021	4.79	<.0001		
Residual		13.52	87 C	.8181	16.54	<.0001		
		Informat	ion Crite	ria				
Neg2LogLike	Parms	AIC	AICC	HQIC	BI	C CAI	IC	
11048.7	7	1062.7 1	1062.7	11073.4	11089.	7 11096.	.7	
			Co	ontrasts				
		Num	Den					
Label		DF	DF	Chi-Se	quare F	Value	Pr > ChiSq	I

276

4

							PSQF	7575 Clustered Example 8 pag
			Solution for F	ixed Effects	5			
				Standard				
Effect		zy	g Estimate	Error	DF t	Value	Pr > t	
Intercept			26.2390	0.9772	327	26.85	<.0001	
time			-0.3668	0.2039	646	-1.80	0.0724	
time*time			-0.07171	0.02577	720	-2.78	0.0055	
BFage85			-1.0161	0.2820	328	-3.60	0.0004	
time*BFag	e85		0.01414	0.04557	212	0.31	0.7566	
zyg		DZ	-2.3236	1.2924	333	-1.80	0.0731	
zyg		ΜZ	0				· [
time*zyg		DZ	-0.1225	0.2061	262	-0.59	0.5529	The level-3 main effect
time*zyg		ΜZ	0					of zygosity explained
BFage85*z	уg	DZ	0.2774	0.3737	341	0.74	0.4584	2.61% of the level-3 pair
BFage85*z	уg	ΜZ	0					intercept variance, but
time*BFag	e85*zyg	DZ	-0.1308	0.06181	257	-2.12	0.0352	zygosity by time actually
time*BFag	e85*zyg	ΜZ	0					increased the level-3 pair
								slope variance instead.
PsuedoR2	(% Reducti	on)	for Cov_Age vs.	Cov_Zyg			L	
Name	CovParm		Subject	Estimate	StdErr	ZValue	ProbZ	PseudoR2
Cov_Age	UN(1,1)		PairID	78.7908	9.3017	8.47	<.0001	•
Cov_Age	UN(2,2)		PairID	0.07234	0.2193	0.33	0.3707	
Cov_Age	UN(1,1)		PairID*TwinID	47.6089	5.2158	9.13	<.0001	
Cov_Age	UN(2,2)		PairID*TwinID	1.4534	0.3052	4.76	<.0001	
Cov_Age	Residual	-		13.5712	0.8236	16.48	<.0001	
Cov_Zyg	UN(1,1)		PairID	76.7361	9.2038	8.34	<.0001	0.026078
Cov_Zyg	UN(2,2)		PairID	0.07387	0.2196	0.34	0.3683	-0.021145
Cov_Zyg	UN(1,1)		PairID*TwinID	47.8637	5.2448	9.13	<.0001	-0.005352
Cov_Zyg	UN(2,2)		PairID*TwinID	1.4538	0.3048	4.77	<.0001	-0.000289
Cov_Zyg	Residual	-		13.5682	0.8232	16.48	<.0001	0.000220

Model 3c: Add Heterogeneous Variances by Zygosity (to quantify heritability)

Note: The STATA version required creating extra dummy codes for the MZ and DZ main effects and interactions with time to be used in the variance model.

```
TITLE "SAS Model 3c: Add Heterogeneous G and R matrices by Zygosity";
PROC MIXED DATA=work.Example8a NOCLPRINT COVTEST NAMELEN=100 IC METHOD=REML;
     CLASS PairID TwinID zyg;
     MODEL info = time time*time BFage85 time*BFage85
                  zyg zyg*time zyg*BFage85 zyg*time*BFage85 / SOLUTION DDFM=Satterthwaite;
     RANDOM INTERCEPT time / TYPE=UN SUBJECT=PairID GROUP=zyg;
                                                                       * Level 3:
     RANDOM INTERCEPT time / TYPE=UN SUBJECT=PairID*TwinID GROUP=zyg; * Level 2;
     REPEATED / GROUP=zyg;
     ODS OUTPUT InfoCrit=Fit_Het CovParms=Cov_Het; * Save for LRT, pseudo-R2;
     ESTIMATE "Age on Intercept: DZ" BFage85 1 BFage85*zyg 1 0;
     ESTIMATE "Age on Time Slope: DZ" time*BFage85 1 time*BFage85*zyg 1 0; RUN;
* Test het variances;
%FitTest(FitFewer=Fit_Zyg, FitMore=Fit_Het);
* STATA Model 3c: Add Heterogeneous G and R matrices by Zygosity
mixed info c.time c.time#c.time c.BFage85 c.time#c.BFage85 ///
           c.zyg c.zyg#c.time c.zyg#c.BFage85 c.zyg#c.time#c.BFage85, ///
      || PairID: mz mztime , noconstant covariance(unstructured) ///
      || PairID: dz dztime , noconstant covariance(unstructured) ///
      || TwinID: mz mztime , noconstant covariance(unstructured) ///
      || TwinID: dz dztime , noconstant covariance(unstructured) ///
         variance reml dfmethod(satterthwaite) dftable(pvalue) residuals(independent,by(zyg)
      lincom c.BFage85*1 + c.zyg#c.BFage85*1
                                                           // Age on Intercept: DZ
      lincom c.time#c.BFage85*1 + c.zyg#c.time#c.BFage85*1 // Age on Time Slope: DZ
      estimates store Fit_Het
      lrtest Fit_Het Fit_Zyg
```

SAS output:

		Covarian	ce Parameter	Estimate	s							
				Sta	ndard	Z						
Cov Parm	Subject	Grou	p Estima	te	Error	Value	Pr Z					
UN(1,1)	PairID	zyg	DZ 55.04	42 11	.8158	4.66	<.0001					
UN(2,1)	PairID	zyg	DZ -0.41	71 1	.3047	-0.32	0.7492					
UN(2,2)	PairID	zyg	DZ	0	-							
UN(1,1)	PairID	zyg	MZ 105.	88 15	.0698	7.03	<.0001					
UN(2,1)	PairID	zyg	MZ 0.97	88 1	.7090	0.57	0.5668					
UN(2,2)	PairID	zyg	MZ 0.61	52 0	.3648	1.69	0.0459					
UN(1,1)	PairID*Tw	inID zyg	DZ 70.86	03 9	.5620	7.41	<.0001					
UN(2,1)	PairID*Tw			74 1	.3398	1.80	0.0712					
UN(2,2)	PairID*Tw			09 0	.2462	4.71	<.0001					
UN(1,1)	PairID*Tw			69 4	.0696	4.57	<.0001					
UN(2,1)	PairID*Tw			66 1	.0519	0.46	0.6436					
UN(2,2)	PairID*Tw			06 0	.4153	3.32	0.0004					
Residual		zyg			.1309	12.35	<.0001					
Residual		zyg			.1721	11.08	<.0001					
		_,3										
		Inform	ation Criter	ia								
Neg2LogLike	Parms	AIC	AICC	HQIC	BIC		CAIC					
11005.0	13	11031.0	11031.2	11051.0	11081.2	110	94.2					
Solution for Fixed Effects												
			Standar	d								
Effect	zy	g Estimat	e Erro	r DF	t Valu	ue P	r > t					
Intercept		26.103	2 1.027	7 139	25.4	40	<.0001					
time		-0.342	6 0.216	9 289	-1.	58	0.1154					
time*time		-0.0705	1 0.0257	0 722	-2.	74	0.0062					
BFage85		-1.028	5 0.296	3 139	-3.4	47	0.0007					
time*BFage8	5	0.0323	2 0.0516	9 102	0.0	63	0.5332					
zyg	DZ	-2.164	0 1.312	5 289	-1.0	65	0.1003					
zyg	MZ		0									
time*zyg	DZ	-0.141	0 0.215	4 228	-0.	65	0.5135					
time*zyg	MZ		0									
BFage85*zyg	DZ		8 0.379	9 295	0.	76	0.4477					
BFage85*zyg	MZ		0									
time*BFage8			5 0.0648	1 221	-2.3	34	0.0203					
time*BFage8			0									
5	,,,											
		E	stimates									
			Standard									
Label		Estimate	Error	DF	t Value	Pr	> t					
Age on Inter	rcept: DZ	-0.7397	0.2378	212	-3.11		.0021					
Age on Time		-0.1192	0.03919	236	-3.04	0	.0026					
0	·											
				Ta tha h				- a44 are 649				
Likelihood A	Ratio Test	for Fit_Zyg	vs. Fit_Het		Is the heterogeneous variance model a better fit? Yes, $-2\Delta LL(7) = 43.66$, $p < .001$ (note SAS didn't count the 0)							
				1es, -2	$\Delta LL(/) = 4$	5.00, p ·	$\sim .001$ (note SA	is alan i count the 0)				
	Neg2Log											
Name		Parms			vDiff I	DFdiff	Pvalue					
_ , ,	11048.7		62.7 1108		•	•						
Fit_Het	11005.0	13 110	31.0 1108	1.2 43	.6599	6	8.6337E-8					

PSQF 7375 Clustered Example 8 page 12 **Heritability** (A or H²), or the contribution of genetics, can be found as twice the difference of the intraclass correlation (ICC) between MZ and DZ twins. **Common environment** (C²) can be found as the difference between the ICC for MZ twins and the heritability estimate (usually constrained to be ≥ 0), and the **unique environment** (E²) can be found as the remainder (i.e., 1 – [heritability + common environment]). Applying these calculations to our results reveals evidence for heritability in both the intercept and the linear time slope, but with much greater uncertainty in the latter.

	Intercept			Linear Time Slope			
Intercept	DZ	MZ	HCE	DZ	MZ	HCE	
Level-3 Pair Variance	55.044	105.880		0.000	0.615		
Level-2 Twin Variance	70.860	18.587		1.161	1.381		
ICC = L3 / (L3 + L2)	0.437	0.851		0.000	0.308		
$H^2 = 2*(ICC MZ - ICC DZ)$			0.827			0.616	
$C^2 = ICC MZ - H^2$			0.024			-0.308	
$E^2 = 1 - (H^2 + C^2)$			0.149			0.692	

Sample Results Section:

The extent of individual change in crystallized intelligence (as measured by the information test) and the extent of heritability therein was examined in a sample of 351 same-sex twin pairs measured every two years for up to four occasions. Multilevel models were estimated using residual maximum likelihood in SAS MIXED. Accordingly, the significance of fixed effects was evaluated with Wald tests using Satterthwaite denominator degrees of freedom, whereas the significance of random effects was evaluated via likelihood ratio tests (i.e., $-2\Delta LL$ with degrees of freedom equal to the number of new random effects variances and covariances). Pseudo-R² effect sizes for the fixed effects were calculated as the proportion reduction in each variance component.

A two-level empty means, random intercept model of occasions at level 1 nested in persons at level 2 was initially estimated; its intraclass correlation (ICC) indicated that 85% of the outcome variance was between persons. The addition of a level-3 random intercept for twin pair resulted in significantly better model fit, $-2\Delta LL(1) = 111.37$, p < .001, and revealed that, of the 85% of the outcome variance that was between persons, 64% was actually due to twin pair (i.e., shared variance between twins). Stated more directly, of the total variance, 15% was at level 1 (within persons over time), 31% was at level 2 (between twins), and 54% was at level 3 (between pairs). A three-level empty means, random intercept model to partition the variance in time-varying age revealed that 63% was between pairs (given that the twins varied in age from 80 to 100 at baseline), whereas the remaining 37% was within persons over time; there was no level-2 age variance in these twins. Thus, the level-3 (cross-sectional) and level-1 (longitudinal) effects of age were modeled separately using baseline age (centered so 0 = 85) and time in study (with 0 = baseline), respectively.

Based on the pattern of model-estimated means, fixed linear and quadratic effects of time were first added, which accounted for 8.33% of the level-1 residual variance. Although adding a variance for the level-2 (twin) random linear time slope (and its covariance with the level-2 twin intercept) significantly improved model fit, $-2\Delta LL(2) = 136.52$, p < .001, the subsequent addition of a variance for the level-3 (pair) random linear time slope (and its covariance with the level-3 pair intercept) did not significantly improve model fit, $-2\Delta LL(2) = 0.29$, p = .86, indicating that the 7% of the random linear time slope variance that was due to twin pair was not distinguishable from 0. Given our interest in examining heritability, though, both random linear time slope variances were retained. Random quadratic time slopes were not significant at either level 2 or level 3, and these were not retained.

The effect of baseline age on the intercept and linear time slope was then added, which explained 7.84% and 32.11% of the level-3 intercept and linear time slope variance, respectively, and which resulted in significant model improvement, F(2,302) = 12.90, p < .001. We then added zygosity mean differences in the intercept, linear time slope, and the effects of baseline age on the intercept and linear time slope. Although these four new fixed effects also resulted in significant model improvement, F(4,276) = 2.83, p < .001, only the level-3 pair intercept variance was reduced (by 2.61%); the level-3 pair time slope variance increased by 2.11% instead. Finally, we added zygosity differences in all variance model parameters—three at level 3, three at level 2, and in residual variance at level 1, which resulted in significant model improvement, $-2\Delta LL(7) = 43.66$, p < .001.

Results for the final model are given in Table X. Given the centering of the model predictors, the reference for the intercept and linear time slope is an MZ twin pair who were 85 years at baseline (when time = 0). Older age at baseline was related to a significantly lower intercept at time 0, equivalently so in both MZ and DZ twins. In contrast, the interaction of age by linear time differed significantly by zygosity: older age at baseline was related to a significantly more negative linear time slope in DZ twins, but not in MZ twins (in which the interaction of age by time was nonsignificantly positive instead). There was also a significant fixed quadratic effect of time, which indicated that the linear rate of decline became more negative by twice the quadratic coefficient of 0.07 per year (i.e., steeper longitudinal decline later in the study, unconditional by baseline age or zygosity). (see text above for interpretation of heritability results)