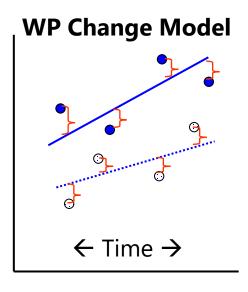
Time-Varying (TV) Predictors in Longitudinal Models of Within-Person Fluctuation

• Topics:

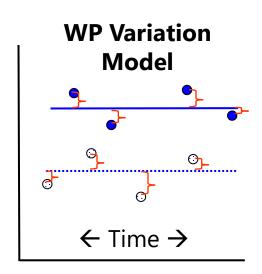
- Concepts and what NOT to do with level-1 TV predictors
- Univariate MLM strategies:
 - Person-(group/cluster)-mean-centering (aka, variable-centering)
 - Grand-mean-centering (aka, constant-centering)
- Multivariate MLM strategies:
 - Latent centering (aka, turn the TV predictor into a TV outcome)
 - Implications for longitudinal (multilevel) mediation

The Joy of Time-Varying (TV) Predictors

TV predictors predict leftover Level-1 WP (residual) variation:



If model for time works, then residuals should look like this →



- Modeling TV predictors (or any level-1 predictor) is complicated because they potentially contain **two different relations with** y_{ti} :
 - \succ Relation of the *level-1 within-person* variation in the predictor x_{ti} with y_{ti}
 - Relation of the *level-2 between-person* variation in the predictor x_{ti} with y_{ti}
 - \rightarrow For now, we are assuming the predictor x_{ti} only **fluctuates** over time...
 - We will need a **different model** when x_{ti} changes individually over time!

The Joy of Time-Varying Predictors

- Time-varying (TV) predictors can usually have 2 levels of relations because they are really 2 predictors in 1 variable
- Example: Stress measured daily (to be used as predictor)
 - > Some days are worse than others:
 - Level-1 WP variation (can be captured using deviation from own mean)
 - > Some people just have more stress than others all the time:
 - Level-2 BP variation (can be captured using person mean over time)
- Can quantify relative sources of variation with an ICC
 - Intraclass Correlation ICC = (BP variance) / (BP variance + WP variance)
 - ICC < 1? TV predictor has WP variation (so it could have a L1 WP slope)</p>
 - > ICC > 0? TV predictor has BP variation (so it *could* have a L2 BP slope)
 - ICC specifically captures BP mean variation, but change variation is possible, too!

Between-Person vs. Within-Person Slopes

- Between- and within-person slopes could be in **SAME** direction
 - ➤ Time-Varying Stress → Time-Varying Health?
 - Level-1 WP: People may feel <u>worse</u> than usual when they are currently under more stress than usual (regardless of what "usual" is)
 - Level-2 BP: People with more chronic stress than other people may have worse general health than people with less chronic stress
- Between- and within-person slopes could be in <u>OPPOSITE</u> directions
 - ➤ Time-Varying Exercise → Time-Varying Blood pressure?
 - Level-1 WP: During exercise, blood pressure is <u>higher</u> than during rest
 - Level-2 BP: People who exercise more often generally have lower blood pressure than people who are more sedentary
- L1 within-person and L2 between-person slopes usually differ
 - > Why? Because variables have different **meanings** at each level!
 - > Why? Because variables have different **scales** at each level!

WAY WRONG: Within-Person Fluctuation Model with x_{ti} represented at Level 1 Only: \rightarrow Its WP and BP Slopes are Smushed Together

 x_{ti} is centered into TVx_{ti} WITHOUT representation at L2:

Level 1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(\mathbf{TVx_{ti}}) + \mathbf{e_{ti}}$$

 $TVx_{ti} = x_{ti} - C_1 \rightarrow it still$ has both Level-2 BP and Level-1 WP variation

Level 2:
$$\beta_{0i} = \gamma_{00} + U_{0i}$$

$$\beta_{1i} = \gamma_{10}$$

$$\gamma_{10} = \text{*smushed*}$$
WP and BP effects

Because TVx_{ti} still contains its original 2 different kinds of variation (BP and WP), its 1 fixed slope has to do the work of 2 predictors!

A *smushed* effect (to me) is also known as a convergence, conflated, or composite effect

Univariate MLM: Adding a Level-1 Predictor Without Level-2 Representation = Smushing

Observed level-1 TVx_{ti} predictor BP and WP variance in still has both BP and WP variance. the **observed level-1** y_{ti} AND given that TVx_{ti} has only **one** outcome is partitioned by fixed slope, it captures a smushed the **model** into estimated effect that presumes equal L2 BP variance components and L1 WP slopes in predicting y_{ti} ! L2 BP **Smushed** Intercept effect γ₁₀ Variance (of U_{0iy}) TVx_{ti} y_{ti} L1 WP Smushed Residual effect γ_{10} Variance (of e_{tiv})

3 Kinds of Fixed Slopes for TV Predictors

Is there a Level-1 Within-Person (WP) slope?

- When you have a higher x_{ti} predictor value than usual (at this occasion), do you also have a higher (or lower) y_{ti} outcome value than usual (at same or later occasion)?
- > If so, the **level-1 within-person** *part* of the TV predictor will reduce the level-1 residual variance (σ_e^2) of the TV outcome

Is there a Level-2 Between-Person (BP) slope?

- > Do people with higher x_{ti} predictor values than other people (on average over time) also have higher (or lower) y_{ti} outcomes than other people (on average over time)?
- If so, the **level-2 between-person** *part* of the TV predictor will reduce level-2 random intercept variance $(\tau_{U_0}^2)$ of the TV outcome

Is there a Level-2 Contextual slope: Do the L2 BP and L1 WP slopes differ?

- After controlling for the actual value of TV predictor at that occasion, is there still an incremental contribution from the level-2 between-person part of the TV predictor (i.e., does one's general tendency matter beyond current TVP value)?
- Equivalently, the Level-2 Contextual slope = L2 BP slope L1 WP slope, so the Level-2 Contextual slope directly tests if a smushed slope is ok (pry not!)

3 Options to Prevent Smushed Slopes

- Within Univariate MLM framework (predict only one column):
 - 1. **Person-mean-centering**: manually carve up TV predictor into its level-specific parts using observed variables (1 predictor per level)
 - More generally, this is "variable-centering" because you are subtracting a variable (e.g., the cluster/group/person mean or person baseline value)
 - Will always yield level-1 within slopes and level-2 between slopes!
 - **2. Grand-mean-centering**: do NOT carve up TV predictor into its level-specific parts, but add level-2 mean to distinguish level-specific slopes
 - More generally, this is "constant-centering" because you are subtracting a constant but still keeping all levels of variance in level-1 TV predictor
 - Choice of constant is irrelevant (changes where 0 is, not what variance it has)
 - Will always yield level-1 within slopes and level-2 contextual slopes!
- Within Multivariate MLM framework (via M-SEM or SEM):
 - 3. Latent-centering: Treat the TV predictor as another outcome

 → let the model carve it up into level-specific latent variables
 - Best in theory, but the type of level-2 slope provided (between or contextual) depends on type of model syntax (and the estimator in Mplus)! (<u>Hoffman, 2019</u>)
 - We will forgo this option for now (and will return to it later)

Option 1. Person-Mean-Centering (P-MC)

- In **P-MC**, we turn the TV predictor x_{ti} into **2 observed variables** that directly represent its BP (level-2) and WP (level-1) sources of variation and include these **2 predictors instead of original** x_{ti} :
- Level-2, BP predictor = person mean of x_{ti}
 - $\rightarrow \mathbf{PMx_i} = \overline{x_i} C_2$
 - > PMx_i is centered at constant C_2 , chosen for meaningful 0 (e.g., sample mean)
 - \rightarrow PMx_i is positive? Above sample mean \rightarrow "more than other people"
 - \rightarrow PMx_i is negative? Below sample mean \rightarrow "less than other people"
- Level-1, WP predictor = deviation from person mean of x_{ti}
 - $ightharpoonup ext{WPx}_{ti} = x_{ti} \overline{x}_i$ (note: uncentered person mean \overline{x}_i is used to center x_{ti})
 - > WPx_{ti} is NOT centered at a constant we subtract a VARIABLE
 - \rightarrow WPx_{ti} is positive? Above your own mean \rightarrow "more than usual"
 - \rightarrow WPx_{ti} is negative? Below your own mean \rightarrow "less than usual"

Within-Person Fluctuation Model with Person-Mean-Centered Level-1 x_{ti}

→ WP and BP slopes directly as **separate** parameters

 x_{ti} is person-mean-centered into WPx_{ti}, with PMx_i at L2:

Level 1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(WPx_{ti}) + e_{ti}$$

 $WPx_{ti} = x_{ti} - \overline{x}_i \rightarrow it has$ only Level-1 WP variation

Level 2:
$$\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + U_{0i}$$

 $\beta_{1i} = \gamma_{10}$

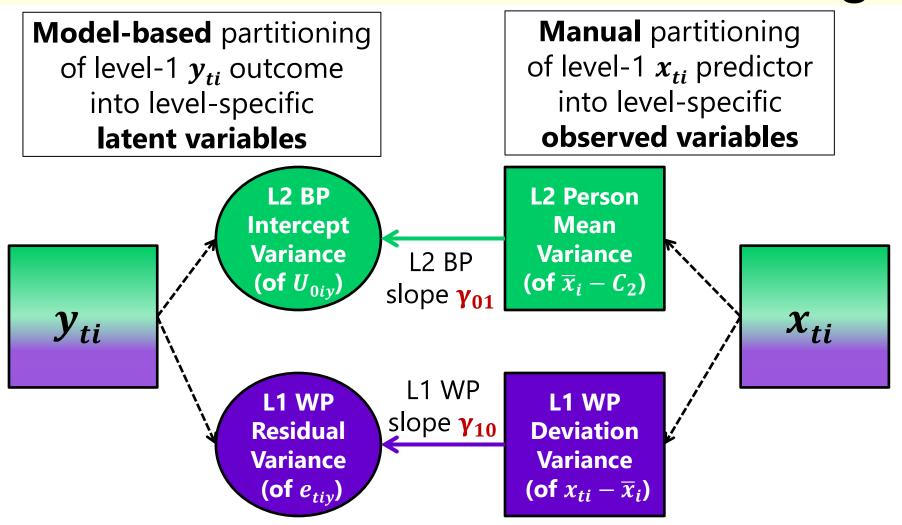
 $PMx_i = \overline{x}_i - C_2 \Rightarrow it has$ only Level-2 BP variation

 γ_{10} = L1 WP main effect of having more x_{ti} than usual

 γ_{01} = L2 BP main effect of having more \overline{x}_i than other people

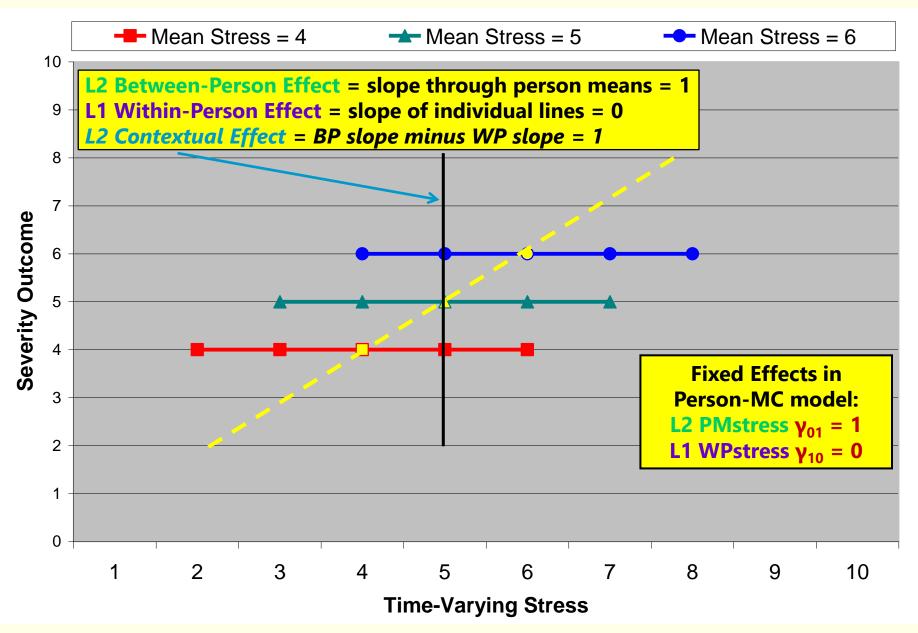
Because WPx_{ti} and PMx_i are uncorrelated, each gets the <u>total</u> effect for its level (WP=L1, BP=L2)

Univariate MLM: Variable-Centering*

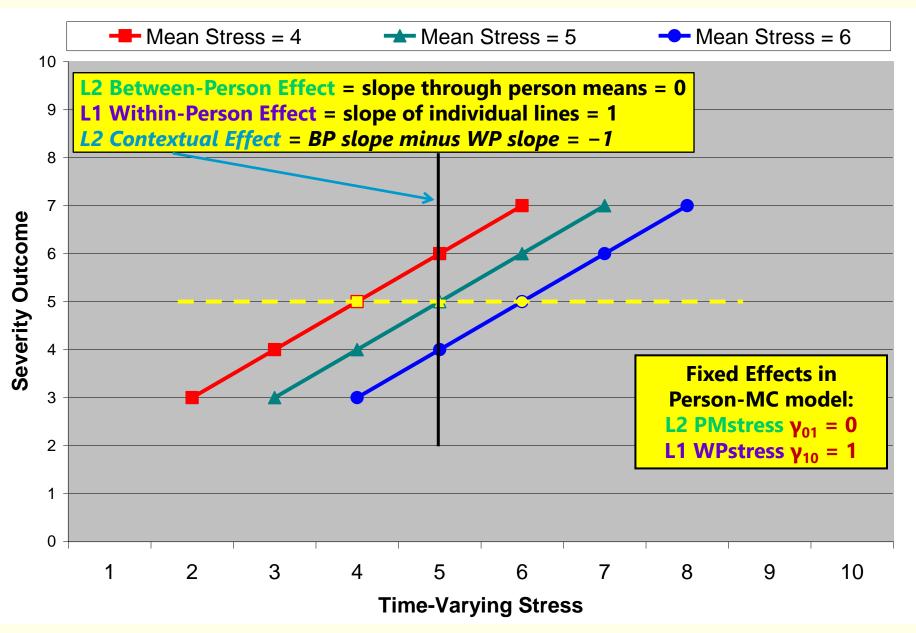


^{*} Known as "person-mean-centering" more generally directly analogous to cluster/group-mean-centering in multilevel models for clustered data)

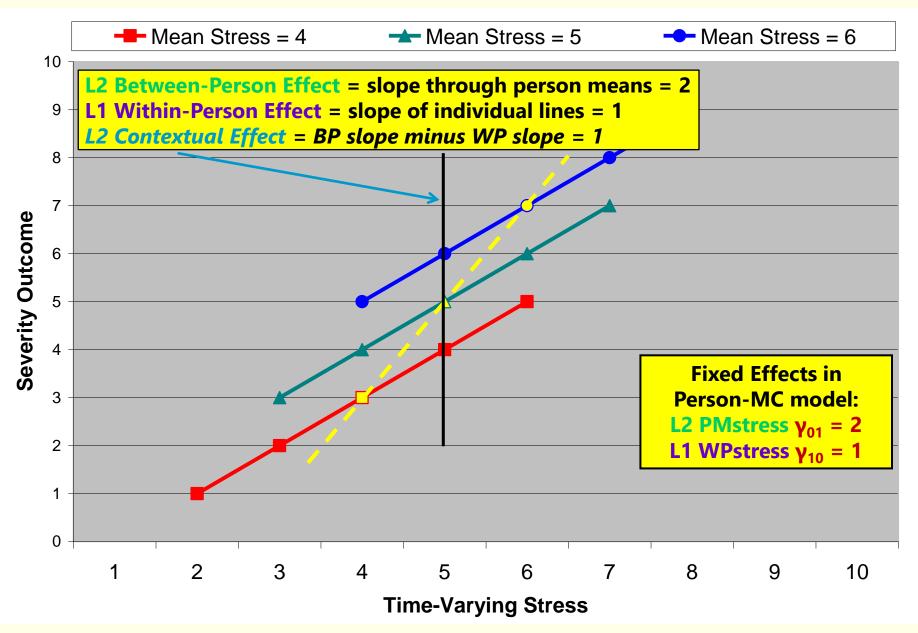
ALL Between-Person Effect, NO Within-Person Effect



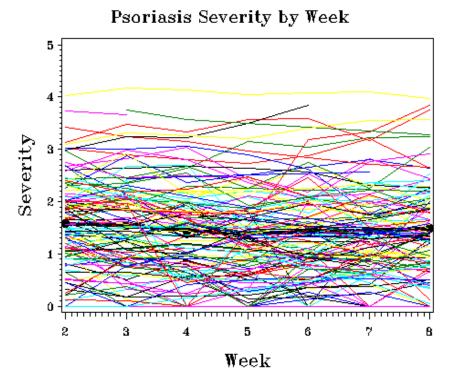
NO Between-Person Effect, ALL Within-Person Effect



Between-Person Effect > Within-Person Effect



- 127 psoriasis patients, 8 weekly assessments (only last 7 used)
- How does perceived stress predict psoriasis severity?
 And is there a time lag for these processes to occur?
- No change in treatment → only WP fluctuation over time
- Analysis plan:
 - ICCs for stress and severity—how much variance is at each level?
 - Assess pattern of variance and covariance in severity over time
 - This was <u>PSQF 6271 Example 4</u>
 - Evaluate prediction of severity by stress at lag 0 and lag 1 weeks... without smushing!



Empty means, random intercept model to get ICCs > proportion of total variance due to BP mean differences

> For each variable:
$$y_{ti} = \gamma_{00} + U_{0i} + e_{ti}$$
, ICC $= \frac{\tau_{U_0}^2}{\tau_{U_0}^2 + \sigma_e^2} = \frac{\text{BP}}{\text{BP+WP}}$

- > Severity outcome: ICC = .83; stress predictor: ICC = .56
- For the severity outcome, the best-fitting unconditional time model for the variance had a level-2 random intercept (in G), along with heterogeneous level-1 residual variances and a Toeplitz (banded) correlation structure up to lag 3 (in R, below)

Estimate	ed R Correl	ation Matrix	for ID 1 \rightarrow V	WP residual	correlation		
Row	Col1	Col2	Col3	Col4	Col5	Col6	Col7
1	1.0000	0.5115	0.3566	0.1112			
2	0.5115	1.0000	0.5115	0.3566	0.1112		
3	0.3566	0.5115	1.0000	0.5115	0.3566	0.1112	
4	0.1112	0.3566	0.5115	1.0000	0.5115	0.3566	0.1112
5		0.1112	0.3566	0.5115	1.0000	0.5115	0.3566
6			0.1112	0.3566	0.5115	1.0000	0.5115
7				0.1112	0.3566	0.5115	1.0000

Level 1:
$$severity_{ti} = \beta_{0i} + \beta_{1i}(WPstressLag0_{ti}) + \beta_{2i}(WPstressLag1_{ti}) + e_{ti}$$

Level 2:
$$\beta_{0i} = \gamma_{00} + \gamma_{01}(PMstress_i) + U_{0i}$$

$$\beta_{1i} = \gamma_{10}$$

$$\beta_{2i} = \gamma_{20}$$

WP effects are <u>fixed</u> $\beta_{2i} = \gamma_{20}$ (no random slopes) → same for everyone $\mathbf{WPx_{ti}} = x_{ti} - \overline{x}_i \rightarrow \mathbf{it} \ \mathbf{has}$ only Level-1 WP variation

 $PMx_i = \overline{x}_i - 2 \rightarrow it has$ only Level-2 BP variation

Model for the Means:

- $\gamma_{00} \rightarrow$ expected severity for someone with person mean stress = 2, and who had severity = 2 last week and currently
- $\gamma_{01} \rightarrow$ BP difference in *average* severity per unit person mean stress
- γ_{10} and $\gamma_{20} \rightarrow$ WP change in *current* severity per unit more stress than usual this week (lag 0) and last week (lag 1)

Level 1:
$$severity_{ti} = \beta_{0i} + \beta_{1i}(WPstressLag0_{ti}) + \beta_{2i}(WPstressLag1_{ti}) + e_{ti}$$

Level 2:
$$\beta_{0i} = 1.96 + 0.48*(PMstress_i) + U_{0i}$$

$$\beta_{1i} = 0.02$$

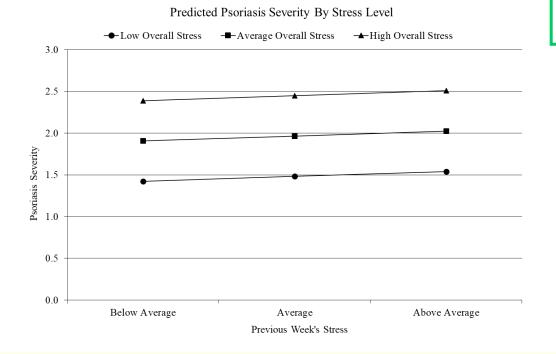
$$\beta_{2i} = 0.06*$$

WP effects are <u>fixed</u>
(no random slopes)

→ same for everyone

 $WPx_{ti} = x_{ti} - \overline{x}_i \rightarrow it has$ only Level-1 WP variation

 $PMx_i = \overline{x}_i - 2 \Rightarrow it has$ only Level-2 BP variation



Example: Syntax by Univariate MLM Program (Using Long Data)

```
SAS:
PROC MIXED DATA=work.Example COVTEST METHOD=REML;
     CLASS ID;
     MODEL severity = PMstress WPstressLaq0 WPstressLaq1 / SOLUTION DDFM=Satterthwaite;
     RANDOM INTERCEPT / TYPE=UN SUBJECT=ID;
     REPEATED week / RCORR TYPE=TOEPH(4) SUBJECT=ID;
RUN;
R (Imer from Ime4 package)—using Imertest package, which does provide correct denominator DF, but
custom R matrix structures are not available (might be possible using gls from nlme instead), so RI only here:
modelname = lmer(data=Example, REML=TRUE,
                  formula=severity~1+PMstress+WPstressLag0+WPstressLag1+(1+|ID))
summary(modelname, ddf="Satterthwaite")
STATA—I don't think custom Toeplitz structure with heterogeneous residual variances is possible,
so I used RI + a homogeneous residual variance version here:
mixed severity c.PMstress c.WPstressLag0 c.WPstressLag1, || ID: , ///
      variance reml covariance(un) residuals(toeplitz3,t(week)) ///
      dfmethod(satterthwaite) dftable(pvalue)
SPSS—I don't think custom Toeplitz structure with heterogeneous variances is possible, so RI only here:
MIXED severity BY ID WITH PMstress WPstressLag0 WPstressLag1
      /METHOD = REML
      /PRINT = SOLUTION TESTCOV
      /FIXED = PMstress WPstressLag0 WPstressLag1
      /RANDOM = INTERCEPT | COVTYPE (UN) SUBJECT (ID).
```

3 Kinds of Fixed Slopes for TV Predictors

2 kinds of slopes Person-Mean-Centering tells us <u>directly</u>:

- Is there a Level-1 Within-Person (WP) slope?
 - When you have higher predictor values than usual (at this occasion), do you also have higher outcomes values than usual (at this occasion), such that the within-person deviation of the TV predictor accounts for level-1 residual variance (σ_e^2)?
 - \rightarrow Given directly by fixed slope of WPx_{ti} regardless of whether PMx_i is there
 - > Note: L1 slope multiplies the **relative** value of x_{ti} , NOT the **original** x_{ti}
- Is there a Level-2 Between-Person (BP) slope?
 - Do people with higher predictor values than other people (on average over time) also have higher outcomes than other people (on average over time), such that the person mean of the TV predictor accounts for level-2 random int var $(\tau_{U_0}^2)$?
 - \rightarrow Given directly by fixed slope of PMx_i regardless of whether WPx_{ti} is there
 - > Note: BP slope is NOT controlling for the original value of x_{ti} at each occasion

3rd Kind of Slope for TV Predictors

- What Person-Mean-Centering DOES NOT tell us <u>directly</u>:
- Is there a Level-2 Contextual effect: Do the BP and WP slopes differ?
 - After controlling for the original value of the TV predictor at that occasion, is there still **an incremental contribution from having a higher person mean** of the TV predictor (i.e., does one's general tendency for the predictor explain more $\tau_{U_0}^2$ above and beyond just the time-specific value of the predictor)?
 - > If there is no contextual effect, then the TV predictor's **L2 BP** and **L1 WP** slopes show **convergence**, which means their effects are of equivalent magnitude
- To answer this question about the Level-2 Contextual effect for the incremental contribution of the person mean, we have two options:
 - Use Person-MC, and ask for the contextual slope = between within (via SAS ESTIMATE, R contest1D, SPSS TEST, STATA LINCOM, Mplus NEW)
 - > Use "constant-centering" for time-varying x_{ti} instead: $\mathbf{TVx_{ti}} = x_{ti} C_1$ \rightarrow centered at CONSTANT C_1 , NOT A LEVEL-2 VARIABLE
 - Which constant only matters for the reference point; it could be the grand mean or any (even 0)

Why the Difference in the Level-2 Slope? Remember Regular Old Regression...

- In this model: $y_i = \beta_0 + \beta_1(x1_i) + \beta_2(x2_i) + e_i$
- If $x1_i$ and $x2_i$ **ARE NOT** correlated:
 - β_1 carries **ALL the relationship** between $x1_i$ and y_i
 - β_2 carries **ALL the relationship** between x_2 and y_i
- If $x1_i$ and $x2_i$ **ARE** correlated:
 - β_1 is **different than** the bivariate relationship between $x1_i$ and y_i
 - "Unique" effect of $x1_i$ controlling for $x2_i$ (or holding $x2_i$ constant)
 - β_2 is **different than** the bivariate relationship between x_2 and y_i
 - "Unique" effect of $x2_i$ controlling for $x1_i$ (or holding $x1_i$ constant)
- Hang onto that idea...

Person-MC vs. Grand-MC: Variable- vs. Constant-Centering for TV Predictors

Level 2		Original	Person-MC Level 1	Grand-MC Level 1	
\overline{x}_i	$\mathbf{PMx_i} = \overline{x}_i - 5$	x_{ti}	$\mathbf{WPx_{ti}} = x_{ti} - \overline{x}_i$	$TVx_{ti} = x_{ti} - 5$	
3	-2	2	-1	-3	
3	-2	4	1	-1	
7	2	6	-1	1	
7	2	8	1	3	

Same L2 PMx_i goes into the model given either way of centering the level-1 variable x_{ti}

In **variable-centering** (P-MC), the level-2 BP mean variation is gone from **WP**x_{ti}, so it is NOT correlated with **PM**x_i

In **constant-centering** (G-MC), the level-2 BP mean variation is still inside **TV**x_{ti}, so it IS STILL CORRELATED with **PM**x_i

So the effects of PMx_i and TVx_{ti} when included together under constant-centering will be different than if either predictor were included by itself...

Within-Person Fluctuation Model with Constant-Centered Level-1 x_{ti}

→ Model tests difference of WP vs. BP slopes (it's been fixed!)

x_{ti} is constant-centered into TVx_{ti}, WITH PMx_i at L2:

Level 1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(TVx_{ti}) + e_{ti}$$

 $TVx_{ti} = x_{ti} - C_1 \rightarrow it still$ has both Level-2 BP and Level-1 WP variation

Level 2:
$$\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + U_{0i}$$

 $\beta_{1i} = \gamma_{10}$

 $PMx_i = \overline{x}_i - C_2 \Rightarrow it has$ only Level-2 BP variation

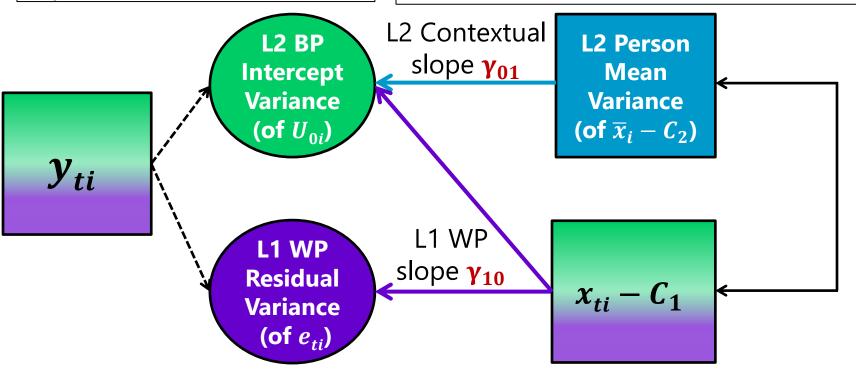
γ₁₀ becomes the L1 WP slope → unique level-1 effect after controlling for PMx_i γ₀₁ becomes the L2 Contextual slope that indicates how the L2 BP effect differs from the L1 WP effect

- \rightarrow unique level-2 slope after controlling for TV x_{ti}
- → does usual level matter beyond current level?

Univariate: Constant-Centering WITH Level-2 Predictor -> OK now!

Model-based partitioning of y_{ti} outcome into levelspecific **latent variables**

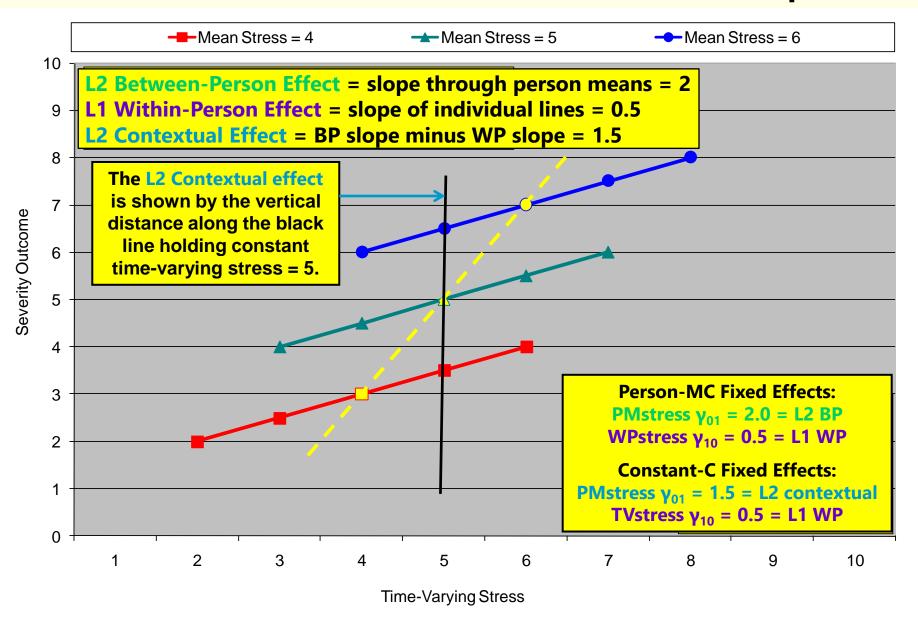
Level-1 x_{ti} is still **NOT** partitioned, but person mean $\overline{x}_i - C_2$ is added to allow an incremental **L2** effect



L2 BP slope = L1 WP slope + Level-2 Contextual slope

Because original x_{ti} still has L2 BP variance, it still carries *some* of the L2 BP effect...

Person-MC vs. Constant-C: Example



Person-MC and Constant-C Models are Equivalent Given Only a **Fixed** Level-1 Main Effect Slope

Person-MC:
$$WPx_{ti} = x_{ti} - PMx_{i}$$

Level-1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti} - PMx_i) + e_{ti}$$

Level-2:
$$\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + U_{0i}$$

$$\beta_{1i} = \gamma_{10}$$

Btw, I am using a centering constant = 0 at both levels to simplify the notation

$$y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti} - PMx_i) + U_{0i} + e_{ti}$$

$$y_{ti} = \gamma_{00} + (\gamma_{01} - \gamma_{10})(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti}$$

Composite Model:

- ← In terms of P-MC
- ← In terms of Const-C

Constant-C:	$TVx_{ti} = x_{ti}$

Level-1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti}) + e_{ti}$$

Level-2:
$$\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + U_{0i}$$

 $\beta_{1i} = \gamma_{10}$

$$\rightarrow y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti}$$

Effect	P-MC	Const-C
Intercept	Υ 00	Υ 00
L1 WP	Y 10	Y 10
L2 Context	γ ₀₁ - γ ₁₀	Y 01
L2 BP	Y 01	γ ₀₁ + γ ₁₀

The Joy of Interactions Involving Time-Varying Predictors

- Must consider interactions with both its L2 BP and L1 WP parts:
- Example: Does time-varying stress (x_{ti}) interact with group (Grp_i) ?
- Person-Mean-Centering (Variable-Centering):
 - \rightarrow WPx_{ti} * Grp_i \rightarrow Does the L1 WP stress slope differ between groups?
 - \rightarrow PMx_i * Grp_i \rightarrow Does the L2 BP stress slope differ between groups?
 - Level-2 interaction is not controlling for current levels of stress
 - If forgotten, then Grp_i moderates the stress effect only at level 1 WP (not L2 BP)
- Constant-Centering:
 - > $TVx_{ti} * Grp_i \rightarrow$ Does the **L1 WP** slope effect differ between groups?
 - \rightarrow PMx_i * Grp_i \rightarrow Does the L2 Contextual slope effect differ between groups?
 - Incremental L2 stress effects after controlling for current levels of stress
 - If forgotten, then although the L1 main effect of stress has been unsmushed via the main effect of PMx_i, the interaction of TVx_{ti} * Grp_i is still smushed

Interactions with Time-Varying Predictors: Example: TV Stress (x_{ti}) by Group (Grp_i)

```
Person-MC: WPx<sub>ti</sub> = x<sub>ti</sub> - PMx<sub>i</sub>

Level-1: y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti} - PMx_i) + e_{ti}

Level-2: \beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{02}(Grp_i) + \gamma_{03}(Grp_i)(PMx_i) + U_{0i}

\beta_{1i} = \gamma_{10} + \gamma_{11}(Grp_i)

Composite: y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti} - PMx_i) + U_{0i} + e_{ti}

+ \gamma_{02}(Grp_i) + \gamma_{03}(Grp_i)(PMx_i) + \gamma_{11}(Grp_i)(x_{ti} - PMx_i)
```

Interactions Involving Time-Varying Predictors Belong at Both Levels of the Model

On the left below \rightarrow Person-MC: WP $x_{ti} = x_{ti} - PMx_{i}$

$$y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti} - PMx_i) + U_{0i} + e_{ti}$$

$$+ \gamma_{02}(Grp_i) + \gamma_{03}(Grp_i)(PMx_i) + \gamma_{11}(Grp_i)(x_{ti} - PMx_i)$$

$$y_{ti} = \gamma_{00} + (\gamma_{01} - \gamma_{10})(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti}$$

$$+ \gamma_{02}(Grp_i) + (\gamma_{03} - \gamma_{11})(Grp_i)(PMx_i) + \gamma_{11}(Grp_i)(x_{ti})$$

- ← Composite model as Person-MC
- ← Composite model as Constant-C

On the right below \rightarrow Constant-C: $TVx_{ti} = x_{ti}$

$$y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti} + \gamma_{02}(Grp_i) + \gamma_{03}(Grp_i)(PMx_i) + \gamma_{11}(Grp_i)(x_{ti})$$

After adding an interaction for **Grp**_i with stress at both levels, the Person-MC and Constant-MC models are equivalent

Intercept: $\gamma_{00} = \gamma_{00}$ BP Slope: $\gamma_{01} = \gamma_{01} + \gamma_{10}$ Context: $\gamma_{01} = \gamma_{01} - \gamma_{10}$

WP Slope: $\gamma_{10} = \gamma_{10}$ BP*Grp Slope: $\gamma_{03} = \gamma_{03} + \gamma_{11}$ Context*Grp: $\gamma_{03} = \gamma_{03} - \gamma_{11}$

Grp Slope: $\gamma_{20} = \gamma_{20}$ BP*WP or Context*WP is the same: $\gamma_{11} = \gamma_{11}$

Intra-Variable* Interactions

- Still must consider interactions with both its BP and WP parts!
- Example: Interaction of TV stress (x_{ti}) with person mean stress (PMx_i) , such that person mean stress is also a moderator (like Grp_i before)
- Person-Mean-Centering (Variable-Centering):
 - \rightarrow WPx_{ti} * PMx_i \rightarrow Does the L1 WP stress slope differ by overall stress?
 - \rightarrow PMx_i * PMx_i \rightarrow Does the L2 BP stress slope differ by overall stress?
 - Level-2 interaction is not controlling for current levels of stress
 - If forgotten, then PMx_i moderates the stress effect only at level 1 WP (not L2 BP)
- Constant-Centering:
 - \rightarrow TV $x_{ti} * PMx_{i} \rightarrow$ Does the **L1 WP** stress slope differ by overall stress?
 - \rightarrow PMx_i * PMx_i \rightarrow Does the L2 Contextual stress slope differ by overall stress?
 - Incremental BP stress effect after controlling for current levels of stress
 - If forgotten, then although the L1 main effect of stress has been unsmushed via the main effect of PMx_i , the interaction of $TVx_{ti} * PMx_i$ is still smushed

^{*} Btw, we will also see this idea in controlling age slopes for age cohort...

Intra-Variable Interactions:

Example: TV Stress (x_{ti}) by Person Mean Stress (PMx_i)

```
Person-MC: WPx_{ti} = x_{ti} - PMx_{i}

Level-1: y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti} - PMx_{i}) + e_{ti}

Level-2: \beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_{i}) + \gamma_{02}(PMx_{i})(PMx_{i}) + U_{0i}
```

 $\beta_{1i} = \gamma_{10} + \gamma_{11}(PMx_i)$

Composite:
$$y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti} - PMx_i) + U_{0i} + e_{ti} + \gamma_{02}(PMx_i)(PMx_i) + \gamma_{11}(PMx_i)(x_{ti} - PMx_i)$$

```
Constant-C: TVx_{ti} = x_{ti}

Level-1: y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti}) + e_{ti}

Level-2: \beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{02}(PMx_i)(PMx_i) + U_{0i}

\beta_{1i} = \gamma_{10} + \gamma_{11}(PMx_i)

Composite: y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti} + \gamma_{02}(PMx_i)(PMx_i) + \gamma_{11}(PMx_i)(x_{ti})
```

Btw, I am using a centering

constant = 0 at both levels

Intra-Variable Interactions:

Example: TV Stress (x_{ti}) by Person Mean Stress (PMx_i)

On the left below \rightarrow Person-MC: WP $x_{ti} = x_{ti} - PMx_{i}$

$$y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti} - PMx_i) + U_{0i} + e_{ti}$$

$$+ \gamma_{02}(PMx_i)(PMx_i) + \gamma_{11}(PMx_i)(x_{ti} - PMx_i)$$

$$y_{ti} = \gamma_{00} + (\gamma_{01} - \gamma_{10})(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti}$$

$$+ (\gamma_{02} - \gamma_{11})(PMx_i)(PMx_i) + \gamma_{11}(PMx_i)(x_{ti})$$

- ← Composite model as Person-MC
- ← Composite model as Constant-C

On the right below \rightarrow Constant-C: $TVx_{ti} = x_{ti}$

$$y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + e_{ti} + \gamma_{02}(PMx_i)(PMx_i) + \gamma_{11}(PMx_i)(x_{ti})$$

After adding an interaction for PMx_i with stress at both levels, the Person-MC and Constant-C models are equivalent

Intercept: $\gamma_{00} = \gamma_{00}$ BP Slope: $\gamma_{01} = \gamma_{01} + \gamma_{10}$ Contextual: $\gamma_{01} = \gamma_{01} - \gamma_{10}$

WP Slope: $\gamma_{10} = \gamma_{10}$ BP² Slope: $\gamma_{02} = \gamma_{02} + \gamma_{11}$ Contextual²: $\gamma_{02} = \gamma_{02} - \gamma_{11}$

BP*WP or Contextual*WP is the same: $\gamma_{11} = \gamma_{11}$

When Person-MC ≠ Constant-Centering: Random Slopes of TV Predictors

Person-MC:
$$WPx_{ti} = x_{ti} - PMx_{i}$$

Level-1: $y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti} - PMx_{i}) + e_{ti}$

Level-2: $\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_{i}) + U_{0i}$
 $\beta_{1i} = \gamma_{10} + U_{1i}$
 $y_{ti} = \gamma_{00} + \gamma_{01}(PMx_{i}) + \gamma_{10}(x_{ti} - PMx_{i}) + U_{0i} + U_{1i}(x_{ti} - PMx_{i}) + e_{ti}$

Constant-C:
$$TVx_{ti} = x_{ti}$$

Level-1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(x_{ti}) + e_{ti}$$

Level-2:
$$\beta_{0i} = \gamma_{00} + \gamma_{01}(PMx_i) + U_{0i}$$

$$\beta_{1i} = \gamma_{10} + U_{1i}$$

$$\rightarrow y_{ti} = \gamma_{00} + \gamma_{01}(PMx_i) + \gamma_{10}(x_{ti}) + U_{0i} + U_{1i}(x_{ti}) + e_{ti}$$

PMx_i variance is still part of the Constant-C random slope → smushed random effect! Thus, the level-1 predictor to be given a random slope should be P-MC to prevent this problem.

Preventing Smushed (BP=WP) Slopes

Fixed side: 2 strategies to prevent smushed slopes

- If using variable-centered (P-MC) L1 TVP (WPxti), it can only have a L1 WP slope, and its L2 PMxi can only have a L2 BP slope (so no problem)
- > If using constant-C L1 TVP (TVx_{ti}), its L1 slope will be smushed (BP=WP) if you don't add its L2 PMx_i to allow a L2 contextual slope = BP WP
- Random side: Only 1 strategy is likely possible!
 (see <u>Rights & Sterba, MBR 2023</u>, for details)
 - If using variable-centered (P-MC) L1 TVP (WPxti), its L2 random slope variance only captures L2 BP differences in its L1 WP slope (so no problem)
 - Creates a pattern of quadratic heterogeneity of variance across WPxti ONLY
 - If using constant-C L1 TVP (TVx_{ti}), its L2 random slope variance also creates intercept heterogeneity of variance (beyond BP diffs in L1 WP slope)
 - Enforces SAME pattern of quadratic heterogeneity of variance across L1 WPx_{ti} and L2 PMx_i
 - > If using TVx_{ti} , you need a "contextual" random slope to allow a different pattern of variance heterogeneity across PMx_i than WPx_{ti} (for BP WP)
 - Requires a L2 BP random "slope ?" variance for L2 PMx_i good luck estimating it!

Modeling Time-Varying Categorical Predictors

- Person-MC and Constant-C usually refer to quantitative TV predictors, but the need to separate BP and WP effects applies to categorical TV predictors too
- Binary level-1 predictors do not lend themselves intuitively to Person-MC
 - ≥ e.g., x_{ti} = 0 or 1 per occasion, person mean = .40 across occasions → impossible values (if x_{ti} = 0, then WP x_{ti} = 0 0.40 = -0.40; if x_{ti} = 1, then WP x_{ti} = 1 0.40 = +0.60)
 - Easier: Leave x_{ti} uncentered in estimating its fixed slope and include person mean as level-2 predictor so that results = Const-C (but still use Person-MC in estimating its random slope)
- For >2 categories, person means of multiple dummy codes may start to break down, but we can think about types of people, and code BP effects accordingly
- Example: Dementia present/not at each time point?
 - ▶ BP effects → Ever diagnosed with dementia (no, yes) rather than person mean
 - People who will eventually be diagnosed may differ prior to diagnosis (a BP stable effect)
 - ➤ TV effect → Diagnosed with dementia at each time point (no, yes)?
 - Acute differences of before/after diagnosis logically can only exist in the "ever" people
- Other examples: Mentor status, father absence, type of shift work (AM/PM)

I Prefer Variable-Centering...

- ...because constant-centering is much easier to screw up! ⊙
- See Table 1 from: Hoffman, L., & Walters, R. W. (2022). <u>Catching up on multilevel modeling</u>. *Annual Review of Psychology, 73*, 629-658.

Table 1 Predictor effect type by model specification

Centering strategy for level-1 predictor	Fixed effect type by predictors included			
(constant-centered level-2 predictor)	Level-1 only	Level-2 only	Both levels	
Variable-centered level-1				
Level-1 predictor: $L1x_{wb} = x_{wb} - \bar{x}_b$	Within	(=0)	Within	
Level-2 predictor: $L2x_b = \bar{x}_b - C_2$	(=0)	Between	Between	
Constant-centered level-1				
Level-1 predictor: $L1x_{wb} = x_{wb} - C_1$	Smushed	(=0)	Within	
Level-2 predictor: $L2x_{wb} = \bar{x}_b - C_2$	(= Within)	Between	Contextual	

Abbreviations: w, within; b, between; C_1 , level-1 centering constant; C_2 , level-2 centering constant. Parentheses indicate assumptions about the fixed slopes of omitted predictors.

Variance Accounted For By Level-1 Predictors

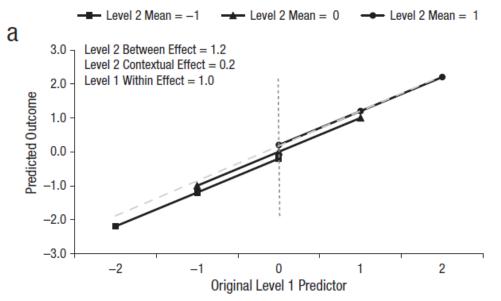
Fixed effects of level-1 TV predictors:

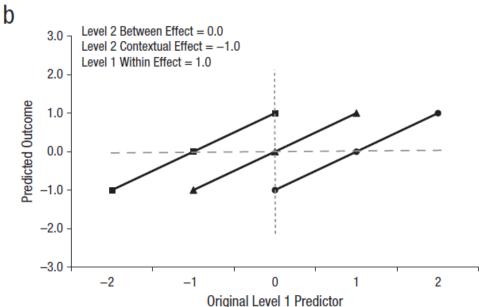
> Level-1 WP part of TV predictors (as main effects by themselves or as part of interactions with other TV predictors) reduce Level-1 (WP) residual variance σ_e^2

What happens to the level-2 random intercept variance depends on what levels of variance the level-1 TV predictor still has:

- > If the level-1 TV predictor STILL has level-2 variance (e.g., Grand-MC predictors), then its level-2 part can reduce level-2 random intercept variance $\tau_{U_0}^2$
 - But badly smushed effects could increase level-2 random intercept variance instead!
- > If the level-1 TV predictor DOES NOT have level-2 variance (e.g., Person-MC or latent-centered predictors), then any reduction in the level-1 residual variance σ_e^2 will cause an INCREASE in level-2 random intercept variance $\tau_{U_0}^2$
 - Same thing happens with Grand-MC level-1 predictors, but you don't generally see it
- It's just an artifact that the estimate of true random intercept variance is: True $\tau_{U_0}^2$ = observed $\tau_{U_0}^2 - \frac{\sigma_e^2}{U_{12}}$ \rightarrow so if only σ_e^2 decreases, then $\tau_{U_0}^2$ increases

Bonus: Between vs. Contextual Effects





- Image from Hoffman (2019), example using clustered data
- Top: Contextual effect is minimal—there is no added benefit to going to a high-SES school when comparing across schools at same level of student SES
- Bottom: Contextual effect is negative—at the same student SES level, relatively high students from low-SES schools do better than relatively low students from high-SES schools

Summary: Univariate MLM for Specifying Effects of Time-Varying Predictors

- "Univariate" approach to MLM is possible for time-varying predictors that *fluctuate* over time (and lower-level predictors with only mean differences across higher levels in general)
- Level-1 predictor can be created two different ways:
 - \succ Easier to understand is variable-centering: $\mathbf{WPx_{ti}} = x_{ti} \overline{x}_i$
 - Directly isolates level-1 within variance, so $WPx_{ti} \rightarrow L1$ within effects
 - \rightarrow More common is constant-centering: $TVx_{ti} = x_{ti} C_1$
 - Does NOT remove level-2 BP variance, so TVx_{ti} will have smushed (BP=WP) effects **unless** you add the necessary slopes for its level-2 predictor analog
- Level-2 predictor is always constant-centered: $PMx_i = \overline{x}_i C_2$
 - PMx_i slope is L2 Between effect when paired with L1 WPx_{ti}
 - PMx_i slope is L2 Contextual effect when paired with L1 TVx_{ti}
 - Within + Contextual = Between; Between Within = Contextual