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Example 4b: Latent Factor Models for Change over Time using Single-Level Structural 

Equation Modeling (SEM): Invariance, Curve of Factors, and Factor of Curves 

(complete syntax and output available for Mplus 8.11 electronically) 

 

These real data (N = 653) come from the Octogenarian Twin Study of Aging in Sweden. I am analyzing three 

measures of cognition—block design, digit–symbol substitution, and prose recall—whose pattern of correlation 

is consistent with a single latent factor at each occasion. For the sake of this example, I am only using four 

occasions (collected at two-year intervals) and pretending these occasions are completely balanced (given that 

these models are more difficult to estimate for unbalanced occasions). Likewise, I am ignoring the nesting of 

individuals in twin pairs to use as many observations as possible. This analysis will involve three main steps:  

(1) verifying the factor structure across occasions as a configural invariance model (model 1), (2) testing 

longitudinal invariance to ensure comparable meaning of the latent factor over time (models 2a–4b), and (3) 

examining whether higher-order factors for an intercept and latent basis change can adequately describe the 

pattern of means, variances, and covariances over time in the latent factor (models 5a–5b), known as a “curve of 

factors” model. NEW in 2025: I also added the alternative, a “factor of curves” model (6a–6b). 
 

Model 1. Mplus Syntax for Configural Invariance—all measurement model parameters estimated 

separately over time, with all factor means=0 and factor variances=1 fixed for identification: 
 
DATA:   FILE = OCTO.csv;  ! Data in same folder as input 

        FORMAT = free; TYPE = INDIVIDUAL;  ! Defaults 

VARIABLE:    

! Unique ID, baseline age, block design, digit symbol, prose recall     

  NAMES = case ageT0 block1-block5 digit1-digit5 prose1-prose5;      

! Variables to be used in the model (first four occasions only)        

  USEVARIABLES =  block1-block4 digit1-digit4 prose1-prose4; 

! Missing data indicator 

  MISSING ARE ALL (-999); 

  

ANALYSIS:   TYPE = GENERAL; ESTIMATOR = MLR;  ! Robust FIML estimation 

OUTPUT:     RESIDUAL MODINDICES(6.635);       ! Help troubleshoot misfit 

            STDYX TECH4; ! Standardized solution and latent variable corrs 

MODEL:   

 

!!!!!! 1. Configural Invariance Model !!!!!! 

! Define latent factors (Factor = indicator loadings) 

  T1 BY block1* digit1* prose1*; 

  T2 BY block2* digit2* prose2*; 

  T3 BY block3* digit3* prose3*; 

  T4 BY block4* digit4* prose4*; 

 

! Indicator intercepts 

  [block1-block4*];  

  [digit1-digit4*]; 

  [prose1-prose4*]; 

 

! Indicator residual variances 

  block1-block4*;  

  digit1-digit4*; 

  prose1-prose4*; 

 

! Same-indicator residual covariances over time 

  block1-block4 WITH block1-block4*; 

  digit1-digit4 WITH digit1-digit4*; 

  prose1-prose4 WITH prose1-prose4*; 

 

! Latent factor means fixed to 0 for identification 

  [T1@0 T2@0 T3@0 T4@0]; 

! Latent factor variances fixed to 1 for identification 

   T1@1 T2@1 T3@1 T4@1; 

! Latent factor covariances (all possible pairs) 

   T1 T2 T3 T4 WITH T1* T2* T3* T4*; 

From Grimm et al. (2016), adapted 

for three instead of four indicators: 

1 1 1 

https://snd.gu.se/en/catalogue/study/2021-195#:~:text=The%20OCTO%2DTwin%20Study%20aims,being%2C%20personality%20and%20personal%20control.
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Model 1. Mplus Output for Configural Invariance: 
 

Number of Free Parameters                       60 → 12 load, 12 int, 12 resvar, 18 res cov, 

Loglikelihood                                         and 6 factor cov 

          H0 Value                      -13135.677 → Our configural invariance model LL 

          H0 Scaling Correction Factor      1.0873 → Deviation from multiv normality=1 

            for MLR 

          H1 Value                      -13121.771 → Saturated=best model LL 

          H1 Scaling Correction Factor      1.0595 → Deviation from multiv normality=1 

            for MLR 

 

Information Criteria → Smaller is better (because they start with −2LL) 

          Akaike (AIC)                   26391.355 

          Bayesian (BIC)                 26660.250 

          Sample-Size Adjusted BIC       26469.750 

            (n* = (n + 2) / 24) 

 

Chi-Square Test of Model Fit 

          Value                             27.704* → LRT for configural against saturated=best 

          Degrees of Freedom                    30 

          P-Value                           0.5861 

          Scaling Correction Factor         1.0039 

            for MLR 

 

*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used 

    for chi-square difference testing in the regular way.  MLM, MLR and WLSM 

    chi-square difference testing is described on the Mplus website.  MLMV, WLSMV, 

    and ULSMV difference testing is done using the DIFFTEST option. 

 

RMSEA (Root Mean Square Error Of Approximation) → How much worse than saturated model=0 

          Estimate                           0.000 

          90 Percent C.I.             0.000  0.027 

          Probability RMSEA <= .05           1.000 

 

CFI/TLI 

          CFI                                1.000 → How much better than null model=0 

          TLI                                1.000 

 

Chi-Square Test of Model Fit for the Baseline Model 

          Value                           3516.779 → LRT for null vs saturated (don’t need) 

          Degrees of Freedom                    66 

          P-Value                           0.0000 

 

SRMR (Standardized Root Mean Square Residual) → How much worse than saturated model=0 

          Value                              0.010 

  

 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

FACTOR LOADINGS → SLOPE OF FACTOR PREDICTING EACH INDICATOR 

T1       BY 

    BLOCK1             6.046      0.239     25.275      0.000 

    DIGIT1            10.648      0.434     24.522      0.000 

    PROSE1             3.272      0.147     22.209      0.000 

 T2       BY 

    BLOCK2             6.449      0.220     29.371      0.000 

    DIGIT2            10.975      0.416     26.400      0.000 

    PROSE2             3.558      0.152     23.400      0.000 

 T3       BY 

    BLOCK3             6.610      0.253     26.118      0.000 

    DIGIT3            11.624      0.453     25.672      0.000 

    PROSE3             3.866      0.177     21.809      0.000 

 T4       BY 

    BLOCK4             6.976      0.286     24.373      0.000 

    DIGIT4            12.787      0.596     21.464      0.000 

    PROSE4             4.690      0.194     24.172      0.000 

 

 

MLR estimation requires a modified LRT formula 

using the scaling correlation factors given above 
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                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

FACTOR COVARIANCES (= CORRELATIONS BECAUSE FACTOR VARIANCES=1) 

 T1       WITH 

    T2                 0.952      0.014     66.221      0.000 

    T3                 0.871      0.030     28.985      0.000 

    T4                 0.825      0.032     25.386      0.000 

 T2       WITH 

    T3                 0.942      0.022     41.877      0.000 

    T4                 0.911      0.022     40.934      0.000 

 

 T3       WITH 

    T4                 0.954      0.014     69.532      0.000 

RESIDUAL COVARIANCES FOR SAME INDICATOR OVER TIME 

 BLOCK1   WITH 

    BLOCK2             7.565      1.274      5.940      0.000 

    BLOCK3             7.778      1.261      6.169      0.000 

    BLOCK4             5.987      1.441      4.155      0.000 

 BLOCK2   WITH 

    BLOCK3             6.900      1.256      5.492      0.000 

    BLOCK4             4.118      1.287      3.200      0.001 

 BLOCK3   WITH 

    BLOCK4             5.432      1.473      3.687      0.000 

 DIGIT1   WITH 

    DIGIT2             9.279      3.496      2.654      0.008 

    DIGIT3             7.746      3.521      2.200      0.028 

    DIGIT4             8.503      3.979      2.137      0.033 

 DIGIT2   WITH 

    DIGIT3             8.249      3.404      2.423      0.015 

    DIGIT4             8.766      3.571      2.455      0.014 

 DIGIT3   WITH 

    DIGIT4             4.525      3.863      1.171      0.241 

 PROSE1   WITH 

    PROSE2             5.181      0.647      8.011      0.000 

    PROSE3             4.403      0.708      6.218      0.000 

    PROSE4             3.932      0.767      5.127      0.000 

 PROSE2   WITH 

    PROSE3             5.568      0.736      7.566      0.000 

    PROSE4             4.697      0.857      5.480      0.000 

 PROSE3   WITH 

    PROSE4             5.233      0.779      6.720      0.000 

FACTOR MEANS (IS "MEAN" FOR ANY VARIABLE IN THE LIKELIHOOD NOT PREDICTED)  

Means 

    T1                 0.000      0.000    999.000    999.000 

    T2                 0.000      0.000    999.000    999.000 

    T3                 0.000      0.000    999.000    999.000 

    T4                 0.000      0.000    999.000    999.000 

INDICATOR INTERCEPTS (EXPECTED OUTCOME WHEN FACTOR PREDICTOR=0)  

Intercepts 

    BLOCK1            10.173      0.302     33.647      0.000 

    BLOCK2             9.564      0.311     30.723      0.000 

    BLOCK3             8.752      0.321     27.305      0.000 

    BLOCK4             7.519      0.364     20.653      0.000 

    DIGIT1            21.039      0.511     41.135      0.000 

    DIGIT2            19.923      0.526     37.908      0.000 

    DIGIT3            18.714      0.573     32.682      0.000 

    DIGIT4            15.602      0.710     21.974      0.000 

    PROSE1             8.503      0.187     45.513      0.000 

    PROSE2             8.097      0.211     38.412      0.000 

    PROSE3             7.274      0.239     30.412      0.000 

    PROSE4             6.521      0.289     22.582      0.000 

FACTOR VARIANCES (IS "VARIANCE" FOR ANY VARIABLE IN THE LIKELIHOOD NOT PREDICTED) 

 Variances 

    T1                 1.000      0.000    999.000    999.000 

    T2                 1.000      0.000    999.000    999.000 

    T3                 1.000      0.000    999.000    999.000 

    T4                 1.000      0.000    999.000    999.000 
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INDICATOR LEFTOVER VARIANCES (IS "RESIDUAL VARIANCE" FOR ANY PREDICTED VARIABLE)  

Residual Variances 

    BLOCK1            19.334      1.707     11.329      0.000 

    BLOCK2            14.178      1.456      9.736      0.000 

    BLOCK3            12.465      1.739      7.168      0.000 

    BLOCK4            12.533      1.807      6.935      0.000 

    DIGIT1            32.716      4.583      7.138      0.000 

    DIGIT2            24.595      3.834      6.414      0.000 

    DIGIT3            24.554      4.088      6.006      0.000 

    DIGIT4            24.878      4.918      5.058      0.000 

    PROSE1             9.981      0.680     14.686      0.000 

    PROSE2            10.664      0.774     13.778      0.000 

    PROSE3             9.803      1.017      9.643      0.000 

    PROSE4             7.431      0.960      7.739      0.000 

 

Given the excellent fit of this model, it appears that the indicator means, variances, and covariances are well 

recreated by the four correlated factors (one for each occasion), along with residual covariances for the same 

indicator over time. Next, we examine longitudinal invariance for each parameter separately: loadings (called 

metric or weak), intercepts (called scalar or strong), and residual variances (called residual or strict). To 

compare each layer of constraints as nested models, we will use rescaled likelihood ratio tests, which is the 

−2ΔLL accounting for the scaling correction factors. At each layer, we will hope that global model fit is not 

significantly worse from enforcing the invariance constraints, and we will also examine modification indices to 

see if any specific parameters want to be noninvariant (different) over time (as local fit). For more explanation 

and examples of testing invariance, please see Lecture 7 and Examples 7a–7d from my SEM class. 
 

 

Model 2a. Mplus Syntax for Full Metric Invariance—Model 1 except the factor loadings for the 

same indicator are now constrained equal over time, and the factor variance =1 at T1 for identification 

but factor variance is free at T2–T4: 
 
MODEL:  ! DATA, VARIABLE, ANALYSIS, OUTPUT are same 

 

!!!!!! 2a. Full Metric Invariance Model !!!!!! 

! Define latent factors (Factor = indicator loadings) 

  T1 BY block1* digit1* prose1* (BL DL PL);  

  T2 BY block2* digit2* prose2* (BL DL PL); 

  T3 BY block3* digit3* prose3* (BL DL PL); 

  T4 BY block4* digit4* prose4* (BL DL PL); 

   

! Indicator intercepts 

  [block1-block4*];  

  [digit1-digit4*]; 

  [prose1-prose4*]; 

 

! Indicator residual variances 

  block1-block4*; 

  digit1-digit4*; 

  prose1-prose4*; 

 

! Same-indicator residual covariances over time 

  block1-block4 WITH block1-block4*; 

  digit1-digit4 WITH digit1-digit4*; 

  prose1-prose4 WITH prose1-prose4*; 

 

! Latent factor means fixed to 0 for identification 

  [T1@0 T2@0 T3@0 T4@0]; 

! Latent factor variance=1 at T1 for identification, free otherwise 

   T1@1 T2* T3* T4*; 

! Latent factor covariances (all possible pairs) 

   T1 T2 T3 T4 WITH T1* T2* T3* T4*; 

 

 

 

From Grimm et al. (2016), adapted 

for three instead of four indicators: 

1 * * 

BL DL PL BL DL PL BL DL PL 

https://www.lesahoffman.com/PSQF6249/index.html
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Model 2a. Mplus Output for Full Metric Invariance: 
 

MODEL FIT INFORMATION 

Number of Free Parameters                       54 → Saved DF=6 (12load vs. 3load + 3FactVar) 

Loglikelihood 

          H0 Value                      -13141.701 → Our metric invariance model LL 

          H0 Scaling Correction Factor      1.1194 

            for MLR 

          H1 Value                      -13121.771 → Saturated=best model LL 

          H1 Scaling Correction Factor      1.0595 

            for MLR 

 

Information Criteria 

          Akaike (AIC)                   26391.403 

          Bayesian (BIC)                 26633.408 

          Sample-Size Adjusted BIC       26461.958 

            (n* = (n + 2) / 24) 

 

Chi-Square Test of Model Fit 

          Value                             41.112* 

          Degrees of Freedom                    36 

          P-Value                           0.2566 

          Scaling Correction Factor         0.9696 

            for MLR 

 

RMSEA (Root Mean Square Error Of Approximation) 

          Estimate                           0.015 

          90 Percent C.I.             0.000  0.033 

          Probability RMSEA <= .05           1.000 

 

CFI/TLI 

          CFI                                0.999 

          TLI                                0.997 

 

SRMR (Standardized Root Mean Square Residual) 

          Value                              0.028 

 

 

MODEL RESULTS (RELEVANT PARAMETERS ONLY) 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

FACTOR LOADINGS NOW EQUAL FOR SAME OUTCOME OVER TIME 

 T1       BY 

    BLOCK1             5.917      0.215     27.569      0.000 = BL 

    DIGIT1            10.484      0.388     27.047      0.000 = DL 

    PROSE1             3.455      0.121     28.641      0.000 = PL 

 T2       BY 

    BLOCK2             5.917      0.215     27.569      0.000 = BL 

    DIGIT2            10.484      0.388     27.047      0.000 = DL 

    PROSE2             3.455      0.121     28.641      0.000 = PL 

 T3       BY 

    BLOCK3             5.917      0.215     27.569      0.000 = BL 

    DIGIT3            10.484      0.388     27.047      0.000 = DL 

    PROSE3             3.455      0.121     28.641      0.000 = PL 

 T4       BY 

    BLOCK4             5.917      0.215     27.569      0.000 = BL 

    DIGIT4            10.484      0.388     27.047      0.000 = DL 

    PROSE4             3.455      0.121     28.641      0.000 = PL 

 

FACTOR VARIANCES FREE AFTER T1 → INCREASING VARIABILITY OVER TIME 

 Variances 

    T1                 1.000      0.000    999.000    999.000 

    T2                 1.124      0.055     20.307      0.000 

    T3                 1.233      0.072     17.149      0.000 

    T4                 1.522      0.108     14.053      0.000 

 

* Note: Although one could argue that the metric model is “good enough” based on its absolute fit, I wanted to 

show an example of how to trouble-shoot sources of noninvariance and create partial invariance models. 

Does the full metric invariance model (2a) 

fit worse than the configural model (1)?  

Yes, −2ΔLL(df=6) = 15.09, p = .0196 

 

In examining why the constrained model fits 

worse, modification indices (below) suggest 

the loading of prose wants to be greater at T4, 

so we can free that loading to create a partial 

metric invariance model to move forward.* 

 

MODEL MODIFICATION INDICES (truncated) 

                 M.I.     E.P.C.  

BY Statements 

T2  BY PROSE4    7.372     0.510   

T3  BY PROSE4    7.879     0.506   

T4  BY PROSE4    7.285     0.348  

 

If we freed the factor loading at T4, the 

rescaled −2ΔLL will improve by ~7.285, and 

the T4 loading will be greater by ~0.348. 
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Model 2b. Mplus Syntax for Partial Metric Invariance—Model 2a except the factor loading for 

prose at T4 is now allowed to differ from its factor loadings at T1–T3: 

 
MODEL:  ! DATA, VARIABLE, ANALYSIS, OUTPUT are same 

 

!!!!!! 2b. Patrial Metric Invariance Model !!!!!! 

! Define latent factors (Factor = indicator loadings) 

  T1 BY block1* digit1* prose1* (BL DL PL);  

  T2 BY block2* digit2* prose2* (BL DL PL); 

  T3 BY block3* digit3* prose3* (BL DL PL); 

  T4 BY block4* digit4* prose4* (BL DL PL4); 

 

! Indicator intercepts 

  [block1-block4*];  

  [digit1-digit4*]; 

  [prose1-prose4*]; 

 

! Indicator residual variances 

  block1-block4*;  

  digit1-digit4*; 

  prose1-prose4*; 

 

! Same-indicator residual covariances over time 

  block1-block4 WITH block1-block4*; 

  digit1-digit4 WITH digit1-digit4*; 

  prose1-prose4 WITH prose1-prose4*; 

 

! Latent factor means fixed to 0 for identification 

  [T1@0 T2@0 T3@0 T4@0]; 

! Latent factor variance=1 at T1 for identification, free otherwise 

   T1@1 T2* T3* T4*; 

! Latent factor covariances (all possible pairs) 

   T1 T2 T3 T4 WITH T1* T2* T3* T4*; 

 

 

Model 2b. Mplus Output for Partial Metric Invariance: 
 

Number of Free Parameters                       55 

Loglikelihood 

          H0 Value                      -13137.301 

          H0 Scaling Correction Factor      1.1146 

            for MLR 

          H1 Value                      -13121.771 

          H1 Scaling Correction Factor      1.0595 

            for MLR 

Information Criteria 

          Akaike (AIC)                   26384.603 

          Bayesian (BIC)                 26631.089 

          Sample-Size Adjusted BIC       26456.465 

            (n* = (n + 2) / 24) 

Chi-Square Test of Model Fit 

          Value                             31.925* 

          Degrees of Freedom                    35 

          P-Value                           0.6173 

          Scaling Correction Factor         0.9729 

            for MLR 

RMSEA (Root Mean Square Error Of Approximation) 

          Estimate                           0.000 

          90 Percent C.I.             0.000  0.025 

          Probability RMSEA <= .05           1.000 

CFI/TLI 

          CFI                                1.000 

          TLI                                1.000 

SRMR (Standardized Root Mean Square Residual) 

          Value                              0.017 

 

 

From Grimm et al. (2016), adapted 

for three instead of four indicators: 

Does the partial metric invariance 

model (2b) still fit worse than the 

configural model (1)?  

No, −2ΔLL(df=5) = 4.127, p = .5313 

 

This means that differences in the factor 

variances over time were sufficiently 

responsible for the prior differences in the 

factor loadings over time. In other words, 

indicators are related to the latent factor 

equivalently across time. 

 

Now we can move forward to test equality 

of the indicator intercepts (scalar).  

 

1 * * 

BL DL PL BL DL PL BL DL PL4 
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MODEL RESULTS (RELEVANT PARAMETERS ONLY) 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

FACTOR LOADINGS NOW EQUAL FOR SAME INDICATOR OVER TIME EXCEPT PROSE4 

 T1       BY 

    BLOCK1             5.987      0.214     28.027      0.000 

    DIGIT1            10.553      0.387     27.288      0.000 

    PROSE1             3.361      0.126     26.618      0.000 

 T2       BY 

    BLOCK2             5.987      0.214     28.027      0.000 

    DIGIT2            10.553      0.387     27.288      0.000 

    PROSE2             3.361      0.126     26.618      0.000 

 T3       BY 

    BLOCK3             5.987      0.214     28.027      0.000 

    DIGIT3            10.553      0.387     27.288      0.000 

    PROSE3             3.361      0.126     26.618      0.000 

 T4       BY 

    BLOCK4             5.987      0.214     28.027      0.000 

    DIGIT4            10.553      0.387     27.288      0.000 

    PROSE4             3.915      0.194     20.158      0.000 = PL4 at T4 > T1,T2,T3 

 Variances 

    T1                 1.000      0.000    999.000    999.000 

    T2                 1.119      0.055     20.486      0.000 

    T3                 1.231      0.071     17.345      0.000 

    T4                 1.410      0.107     13.228      0.000 

 

 

Model 3a. Mplus Syntax for Full Scalar Invariance—Model 2b except the intercepts for the same 

indicator are constrained equal (including prose4, given how few indicators there are per factor), and 

the factor mean = 0 at T1 for identification but factor mean is free at T2–T4: 

 
MODEL:  ! DATA, VARIABLE, ANALYSIS, OUTPUT are same 

 

!!!!!! 3a. Full Scalar Invariance Model !!!!!! 

! Define latent factors (Factor = indicator loadings) 

  T1 BY block1* digit1* prose1* (BL DL PL);  

  T2 BY block2* digit2* prose2* (BL DL PL); 

  T3 BY block3* digit3* prose3* (BL DL PL); 

  T4 BY block4* digit4* prose4* (BL DL PL4); 

 

! Indicator intercepts 

  [block1-block4*] (BI);  

  [digit1-digit4*] (DI); 

  [prose1-prose4*] (PI); 

 

! Indicator residual variances 

  block1-block4*;  

  digit1-digit4*; 

  prose1-prose4*; 

 

! Same-indicator residual covariances over time 

  block1-block4 WITH block1-block4*; 

  digit1-digit4 WITH digit1-digit4*; 

  prose1-prose4 WITH prose1-prose4*; 

 

! Latent factor mean=0 at T1 for identification, free otherwise 

  [T1@0 T2* T3* T4*]; 

! Latent factor variance=1 at T1 for identification, free otherwise 

   T1@1 T2* T3* T4*; 

! Latent factor covariances (all possible pairs) 

   T1 T2 T3 T4 WITH T1* T2* T3* T4*; 

 

 

 

 

From Grimm et al. (2016), adapted 

for three instead of four indicators: 

1 * * 

BL DL PL BL DL PL BL DL PL4 

BI DI PI BI DI PI BI DI PI 



PSQF 7375 Adv Long Example 4b page 8  

 

 

Model 3a. Mplus Output for Full Scalar Invariance: 
 

Number of Free Parameters                       49 → Saved DF=6 (12int vs. 3int + 3FactMean) 

Loglikelihood 

          H0 Value                      -13140.311 

          H0 Scaling Correction Factor      1.1311 

            for MLR 

          H1 Value                      -13121.771 

          H1 Scaling Correction Factor      1.0595 

            for MLR 

Information Criteria 

          Akaike (AIC)                   26378.621 

          Bayesian (BIC)                 26598.219 

          Sample-Size Adjusted BIC       26442.644 

            (n* = (n + 2) / 24) 

Chi-Square Test of Model Fit 

          Value                             38.075* 

          Degrees of Freedom                    41 

          P-Value                           0.6014 

          Scaling Correction Factor         0.9739 

            for MLR 

RMSEA (Root Mean Square Error Of Approximation) 

          Estimate                           0.000 

          90 Percent C.I.             0.000  0.024 

          Probability RMSEA <= .05           1.000 

CFI/TLI 

          CFI                                1.000 

          TLI                                1.000 

SRMR (Standardized Root Mean Square Residual) 

          Value                              0.020 

 

MODEL RESULTS (RELEVANT PARAMETERS ONLY) 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

FACTOR MEANS NOW SHOW DECLINE OVER TIME 

  Means 

    T1                 0.000      0.000    999.000    999.000 

    T2                -0.110      0.027     -4.030      0.000 

    T3                -0.255      0.037     -6.936      0.000 

    T4                -0.479      0.049     -9.741      0.000 

 

INDICATOR INTERCEPTS NOW EQUAL FOR SAME OUTCOME OVER TIME 

 Intercepts 

    BLOCK1            10.232      0.285     35.949      0.000 = BI 

    BLOCK2            10.232      0.285     35.949      0.000 

    BLOCK3            10.232      0.285     35.949      0.000 

    BLOCK4            10.232      0.285     35.949      0.000 

    DIGIT1            21.067      0.480     43.919      0.000 = DI 

    DIGIT2            21.067      0.480     43.919      0.000 

    DIGIT3            21.067      0.480     43.919      0.000 

    DIGIT4            21.067      0.480     43.919      0.000 

    PROSE1             8.422      0.176     47.835      0.000 = PI 

    PROSE2             8.422      0.176     47.835      0.000 

    PROSE3             8.422      0.176     47.835      0.000 

    PROSE4             8.422      0.176     47.835      0.000 

 

 

 

 

 

 

 

 

 

 

 

 

Does the full scalar model (3a) fit worse 

than the partial metric model (2a)?  

No, −2ΔLL(df=6) = 6.144, p = .4073 

 

This means that differences in the factor 

means over time were sufficiently 

responsible for the differences in the 

indicator means (now intercepts) over time. 

 

Now we can move forward to test equality 

of the indicator residual variances.  



PSQF 7375 Adv Long Example 4b page 9  

 

Model 4a. Mplus Syntax for Full Residual Variance Invariance—Model 3a except the residual 

variances for the same indicator are constrained equal over time (including prose4 to start with): 

 
MODEL:  ! DATA, VARIABLE, ANALYSIS, OUTPUT are same 

 

!!!!!! 4a. Full Residual Variance Invariance Model !!!!!! 

! Define latent factors (Factor = indicator loadings) 

  T1 BY block1* digit1* prose1* (BL DL PL);  

  T2 BY block2* digit2* prose2* (BL DL PL); 

  T3 BY block3* digit3* prose3* (BL DL PL); 

  T4 BY block4* digit4* prose4* (BL DL PL4); 

 

! Indicator intercepts 

  [block1-block4*] (BI);  

  [digit1-digit4*] (DI); 

  [prose1-prose4*] (PI); 

 

! Indicator residual variances 

  block1-block4* (BR);  

  digit1-digit4* (DR); 

  prose1-prose4* (PR); 

 

! Same-indicator residual covariances over time 

  block1-block4 WITH block1-block4*; 

  digit1-digit4 WITH digit1-digit4*; 

  prose1-prose4 WITH prose1-prose4*; 

 

 

! Latent factor mean=0 at T1 for identification, free otherwise 

  [T1@0 T2* T3* T4*]; 

! Latent factor variance=1 at T1 for identification, free otherwise 

   T1@1 T2* T3* T4*; 

! Latent factor covariances (all possible pairs) 

   T1 T2 T3 T4 WITH T1* T2* T3* T4*; 

 

Model 4a. Mplus Output for Full Residual Variance Invariance: 
 

Number of Free Parameters                       40 → Saved DF=9 (12resvar vs. 3resvar) 

Loglikelihood 

          H0 Value                      -13157.694 

          H0 Scaling Correction Factor      1.1780 

            for MLR 

          H1 Value                      -13121.771 

          H1 Scaling Correction Factor      1.0595 

            for MLR 

Information Criteria 

          Akaike (AIC)                   26395.388 

          Bayesian (BIC)                 26574.651 

          Sample-Size Adjusted BIC       26447.651 

            (n* = (n + 2) / 24) 

Chi-Square Test of Model Fit 

          Value                             74.477* 

          Degrees of Freedom                    50 

          P-Value                           0.0140 

          Scaling Correction Factor         0.9647 

            for MLR 

RMSEA (Root Mean Square Error Of Approximation) 

          Estimate                           0.027 

          90 Percent C.I.             0.013  0.040 

          Probability RMSEA <= .05           0.999 

CFI/TLI 

          CFI                                0.993 

          TLI                                0.991 

SRMR (Standardized Root Mean Square Residual) 

          Value                              0.032 

 

 

From Grimm et al. (2016), adapted 

for three instead of four indicators: 

Does the full residual variance model (4a) 

fit worse than the full scalar model (3a)?  

Yes, −2ΔLL(df=9) = 37.680, p < .0001 

MODEL MODIFICATION INDICES (truncated) 

             M.I.     E.P.C.  

Variances/Residual Variances 

BLOCK1     21.897     4.079   

DIGIT1     10.763     7.267   

 

If we freed the block residual variance at T1, 

the rescaled −2ΔLL will improve by 

~21.897, and the residual variance will be 

greater by ~4.079. To save a step, I will free 

both of these residual variances at once. 

1 * * 

BL DL PL BL DL PL BL DL PL4 

BR DR PR BR DR PR BR DR PR 

BI DI PI BI DI PI BI DI PI 
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MODEL RESULTS (RELEVANT PARAMETERS ONLY) 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

RESIDUAL VARIANCES = AMOUNT OF "NOT THE FACTOR" VARIANCE EQUAL OVER TIME 

    BLOCK1            15.848      1.193     13.282      0.000 = BR 

    BLOCK2            15.848      1.193     13.282      0.000 

    BLOCK3            15.848      1.193     13.282      0.000 

    BLOCK4            15.848      1.193     13.282      0.000 

    DIGIT1            26.480      3.211      8.246      0.000 = DR 

    DIGIT2            26.480      3.211      8.246      0.000 

    DIGIT3            26.480      3.211      8.246      0.000 

    DIGIT4            26.480      3.211      8.246      0.000 

    PROSE1            10.032      0.538     18.661      0.000 = PR 

    PROSE2            10.032      0.538     18.661      0.000 

    PROSE3            10.032      0.538     18.661      0.000 

    PROSE4            10.032      0.538     18.661      0.000 

 

Model 4b. Mplus Syntax for Partial Residual Variance Invariance—Model 4a except the residual 

variances for block and digit at T1 can differ from those at T2–T4: 
 
MODEL:  ! DATA, VARIABLE, ANALYSIS, OUTPUT are same 

 

!!!!!! 4b. Partial Residual Variance Invariance Model !!!!!! 

! Define latent factors (Factor = indicator loadings) 

  T1 BY block1* digit1* prose1* (BL DL PL);  

  T2 BY block2* digit2* prose2* (BL DL PL); 

  T3 BY block3* digit3* prose3* (BL DL PL); 

  T4 BY block4* digit4* prose4* (BL DL PL4); 

 

! Indicator intercepts 

  [block1-block4*] (BI);  

  [digit1-digit4*] (DI); 

  [prose1-prose4*] (PI); 

 

! Indicator residual variances 

  block1* (BR1); block2-block4* (BR);  

  digit1* (DR1); digit2-digit4* (DR); 

  prose1-prose4* (PR); 

 

! Same-outcome residual covariances over time 

  block1-block4 WITH block1-block4*; 

  digit1-digit4 WITH digit1-digit4*; 

  prose1-prose4 WITH prose1-prose4*; 

 

! Latent factor mean=0 at T1 for  

! identification, free otherwise 

  [T1@0 T2* T3* T4*]; 

! Latent factor variance=1 at T1 for identification, free otherwise 

   T1@1 T2* T3* T4*; 

! Latent factor covariances (all possible pairs) 

   T1 T2 T3 T4 WITH T1* T2* T3* T4*; 

 

Model 4b. Mplus Output for Partial Residual Variance Invariance: 
 

Number of Free Parameters                       42 → Saved DF=7 (12resvar vs. 3+2resvar) 

Loglikelihood 

          H0 Value                      -13144.753 

          H0 Scaling Correction Factor      1.1650 

            for MLR 

          H1 Value                      -13121.771 

          H1 Scaling Correction Factor      1.0595 

            for MLR 

Information Criteria 

          Akaike (AIC)                   26373.506 

          Bayesian (BIC)                 26561.732 

          Sample-Size Adjusted BIC       26428.382 

            (n* = (n + 2) / 24) 

From Grimm et al. (2016), adapted 

for three instead of four outcomes: 

1 * * 

BL DL PL BL DL PL BL DL PL4 

BR1 DR1 PR BR DR PR BR DR PR 

BI DI PI BI DI PI BI DI PI 
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Chi-Square Test of Model Fit 

          Value                             47.525* 

          Degrees of Freedom                    48 

          P-Value                           0.4922 

          Scaling Correction Factor         0.9672 

            for MLR 

RMSEA (Root Mean Square Error Of Approximation) 

          Estimate                           0.000 

          90 Percent C.I.             0.000  0.025 

          Probability RMSEA <= .05           1.000 

CFI/TLI 

          CFI                                1.000 

          TLI                                1.000 

Chi-Square Test of Model Fit for the Baseline Model 

          Value                           3516.779 

          Degrees of Freedom                    66 

          P-Value                           0.0000 

SRMR (Standardized Root Mean Square Residual) 

          Value                              0.025 

 

MODEL RESULTS 

                                                   Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

FACTOR LOADINGS EQUAL FOR SAME OUTCOME OVER TIME EXCEPT PROSE4 

T1       BY 

    BLOCK1             5.972      0.215     27.823      0.000 = BL → TO BE USED NEXT 

    DIGIT1            10.579      0.385     27.475      0.000 = DL  

    PROSE1             3.371      0.125     26.973      0.000 = PL 

 T2       BY 

    BLOCK2             5.972      0.215     27.823      0.000 = BL 

    DIGIT2            10.579      0.385     27.475      0.000 = DL 

    PROSE2             3.371      0.125     26.973      0.000 = PL 

 T3       BY 

    BLOCK3             5.972      0.215     27.823      0.000 = BL 

    DIGIT3            10.579      0.385     27.475      0.000 = DL 

    PROSE3             3.371      0.125     26.973      0.000 = PL 

 T4       BY 

    BLOCK4             5.972      0.215     27.823      0.000 = BL 

    DIGIT4            10.579      0.385     27.475      0.000 = DL 

    PROSE4             3.911      0.195     20.103      0.000 = PL4 

FACTOR COVARIANCES ALLOWED TO DIFFER OVER TIME (NOT CORRELATIONS HERE) 

T1       WITH 

    T2                 1.009      0.028     36.545      0.000 

    T3                 0.966      0.042     23.020      0.000 

    T4                 0.983      0.052     19.024      0.000 

 T2       WITH 

    T3                 1.109      0.059     18.727      0.000 

    T4                 1.150      0.067     17.099      0.000 

 T3       WITH 

    T4                 1.263      0.077     16.482      0.000 

RESIDUAL COVARIANCES FOR SAME INDICATOR OVER TIME (FREELY ESTIMATED) 

 BLOCK1   WITH 

    BLOCK2             7.453      1.193      6.247      0.000 

    BLOCK3             8.263      1.248      6.620      0.000 

    BLOCK4             6.584      1.448      4.548      0.000 

 BLOCK2   WITH 

    BLOCK3             7.159      1.198      5.978      0.000 

    BLOCK4             4.482      1.319      3.398      0.001 

 BLOCK3   WITH 

    BLOCK4             6.331      1.359      4.658      0.000 

 DIGIT1   WITH 

    DIGIT2             8.909      3.339      2.668      0.008 

    DIGIT3             7.459      3.531      2.113      0.035 

    DIGIT4             7.823      3.728      2.099      0.036 

 DIGIT2   WITH 

    DIGIT3             7.398      3.483      2.124      0.034 

    DIGIT4             7.779      3.446      2.257      0.024 

 DIGIT3   WITH 

    DIGIT4             2.729      3.671      0.743      0.457 

Does the partial residual variance model 

(4b) still fit worse than the full scalar 

model (3a)?  

No, −2ΔLL(df=7) = 9.576, p = .2139 

 

This will be our new baseline moving 

forward with respect to the structural model, 

which is saturated here (all possible means, 

variances, and covariances are estimated 

except where constrained for identification). 

 

But we will need to change the method of 

identification for our change model so that 

all the lower-order factor variances can be 

estimated instead… 
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 PROSE1   WITH 

    PROSE2             4.916      0.619      7.944      0.000 

    PROSE3             4.368      0.681      6.418      0.000 

    PROSE4             4.717      0.848      5.560      0.000 

 PROSE2   WITH 

    PROSE3             5.261      0.622      8.461      0.000 

    PROSE4             5.325      0.853      6.240      0.000 

 PROSE3   WITH 

    PROSE4             6.301      0.680      9.261      0.000 

FACTOR MEANS SHOW INCREASING DECLINE OVER TIME 

 Means 

    T1                 0.000      0.000    999.000    999.000 

    T2                -0.110      0.027     -4.032      0.000 

    T3                -0.256      0.037     -6.944      0.000 → Δ T2 = -.146 

    T4                -0.484      0.049     -9.791      0.000 → Δ T3 = -.228 

INTERCEPTS FOR SAME INDICATOR HELD EQUAL OVER TIME (SO CHANGE IS DUE TO FACTORS ONLY!) 

 Intercepts 

    BLOCK1            10.238      0.284     35.996      0.000 = BI 

    BLOCK2            10.238      0.284     35.996      0.000 

    BLOCK3            10.238      0.284     35.996      0.000 

    BLOCK4            10.238      0.284     35.996      0.000 

    DIGIT1            21.086      0.481     43.876      0.000 = DI 

    DIGIT2            21.086      0.481     43.876      0.000 

    DIGIT3            21.086      0.481     43.876      0.000 

    DIGIT4            21.086      0.481     43.876      0.000 

    PROSE1             8.423      0.176     47.934      0.000 = PI 

    PROSE2             8.423      0.176     47.934      0.000 

    PROSE3             8.423      0.176     47.934      0.000 

    PROSE4             8.423      0.176     47.934      0.000 

FACTOR VARIANCES SHOW INCREASING VARIABILITY OVER TIME 

 Variances 

    T1                 1.000      0.000    999.000    999.000 

    T2                 1.126      0.054     20.887      0.000 

    T3                 1.231      0.070     17.630      0.000 

    T4                 1.415      0.105     13.534      0.000 

RESIDUAL VARIANCES = AMOUNT OF "NOT THE FACTOR" VARIANCE EQUAL EXCEPT BLOCK1 AND DIGIT1 

    BLOCK1            19.552      1.624     12.041      0.000 = BR1 

    BLOCK2            13.573      1.220     11.127      0.000 = BR 

    BLOCK3            13.573      1.220     11.127      0.000 = BR 

    BLOCK4            13.573      1.220     11.127      0.000 = BR 

    DIGIT1            32.968      4.390      7.510      0.000 = DR1 

    DIGIT2            23.577      3.147      7.492      0.000 = DR 

    DIGIT3            23.577      3.147      7.492      0.000 = DR 

    DIGIT4            23.577      3.147      7.492      0.000 = DR 

    PROSE1             9.918      0.542     18.283      0.000 = PR 

    PROSE2             9.918      0.542     18.283      0.000 = PR 

    PROSE3             9.918      0.542     18.283      0.000 = PR 

    PROSE4             9.918      0.542     18.283      0.000 = PR 

 

Model 5a. Mplus Syntax for Latent Basis Change Model—also known as a “Curve of Factors” 

Model—keeping non-invariant parameters from prior measurement models, but using a “marker item” 

identification method for the factor variances so they can become “leftover”: 
 
MODEL:  ! DATA, VARIABLE, ANALYSIS, OUTPUT are same 

 

!!!!!! 5a. Latent Basis Change Model !!!!!! 

! Define latent factors (Factor = indicator loadings) 

! Factor loadings held equal over time except prose4 

  T1 BY block1@5.972; T1 BY digit1* prose1* (DL PL);  

  T2 BY block2@5.972; T2 BY digit2* prose2* (DL PL); 

  T3 BY block3@5.972; T3 BY digit3* prose3* (DL PL); 

  T4 BY block4@5.972; T4 BY digit4* prose4* (DL PL4); 

 

! Indicator intercepts all held equal over time 

  [block1-block4*] (BI);  

  [digit1-digit4*] (DI); 

  [prose1-prose4*] (PI); 

Because our time-specific factor variances 

need to be free to become leftover  

(= “disturbances”), we need to change our 

model identification to use a “marker 

item” whose factor loading is fixed (and 

still equal over time). Rather than fixing 

that loading to 1, we are fixing it to the 

value corresponding to the previous T1 

factor (with mean=0 and variance=1), that 

way the total SD ~= 1 for the T1 factor. 



PSQF 7375 Adv Long Example 4b page 13  

 
! Indicator residual variances held equal over time 

! except block1 and digit1 

  block1* (BR1); block2-block4* (BR);  

  digit1* (DR1); digit2-digit4* (DR); 

  prose1-prose4* (PR); 

 

! Same-indicator residual covariances over time 

  block1-block4 WITH block1-block4*; 

  digit1-digit4 WITH digit1-digit4*; 

  prose1-prose4 WITH prose1-prose4*; 

 

! Latent factor mean=0 at all occasions so that all mean change  

! is captured by the intercept and slope factors' fixed effects 

  [T1@0 T2@0 T3@0 T4@0]; 

! Latent factor variance held equal over time (like diagonal R matrix) 

! so all heterogeneity of variance is captured by slope factor variance 

   T1* T2* T3* T4* (ResVar);  

! Latent factor covariances (all possible pairs) SHUT OFF @0 so that 

! all covariance over time is captured by intercept and slope factor variances 

   T1 T2 T3 T4 WITH T1@0 T2@0 T3@0 T4@0; 

 

! Define new higher-order intercept and latent basis change factors 

  Int BY T1@1 T2@1 T3@1 T4@1; 

  Slp BY T1@0 T2*  T3*  T4@1; 

! Higher-order factor means = fixed effects 

  [Int@0 Slp*]; ! Fixed int = 0 for identification 

! Higher-order factor variances = random effect variances 

  Int* Slp*;  

! Higher-order factor covariance = random effects covariance 

  Int WITH Slp*;  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Grimm et al. (2016), adapted 

to make a latent basis slope factor: * 
* 1 

0 

0 

Note: the loading for T4 

could have been fixed to 3 

instead to maintain a typical 

metric of change per unit 

time (per two years here). 
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Model 5a. Mplus Output for Latent Basis Change Model (i.e., “Curve of Factors” Model): 
 

Number of Free Parameters                       36 → Saved DF=6 

Loglikelihood 

          H0 Value                      -13151.623 

          H0 Scaling Correction Factor      1.1915 

            for MLR 

          H1 Value                      -13121.771 

          H1 Scaling Correction Factor      1.0595 

            for MLR 

Information Criteria 

          Akaike (AIC)                   26375.247 

          Bayesian (BIC)                 26536.583 

          Sample-Size Adjusted BIC       26422.284 

            (n* = (n + 2) / 24) 

Chi-Square Test of Model Fit 

          Value                             61.458* 

          Degrees of Freedom                    54 

          P-Value                           0.2265 

          Scaling Correction Factor         0.9715 

            for MLR 

RMSEA (Root Mean Square Error Of Approximation) 

          Estimate                           0.015 

          90 Percent C.I.             0.000  0.030 

          Probability RMSEA <= .05           1.000 

CFI/TLI 

          CFI                                0.998 

          TLI                                0.997 

SRMR (Standardized Root Mean Square Residual) 

          Value                              0.028 

 

MODEL RESULTS – NEW PARAMETERS ONLY: 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

NEW HIGHER-ORDER FACTOR LOADINGS 

 INT      BY 

    T1                 1.000      0.000    999.000    999.000 

    T2                 1.000      0.000    999.000    999.000 

    T3                 1.000      0.000    999.000    999.000 

    T4                 1.000      0.000    999.000    999.000 

 SLP      BY 

    T1                 0.000      0.000    999.000    999.000 

    T2                 0.270      0.045      6.057      0.000 → 27.0% of change by T2 

    T3                 0.629      0.074      8.439      0.000 → 62.6% of change by T3 

    T4                 1.000      0.000    999.000    999.000 

 

HIGHER-ORDER FACTOR COVARIANCE = RANDOM EFECT COVARIANCE (IN G MATRIX) 

 INT      WITH 

    SLP                0.025      0.056      0.441      0.659 

 

HIGHER-ORDER FACTOR MEANS = FIXED INTERCEPT=0 FOR IDENTIFICATION, FIXED SLOPE 

 Means 

    INT                0.000      0.000    999.000    999.000 

    SLP               -0.466      0.047     -9.890      0.000 → Total mean decline over time 

 

FACTOR VARIANCES = RANDOM EFFECTS VARIANCES (IN G MATRIX) 

 Variances 

    INT                0.993      0.069     14.304      0.000 

    SLP                0.372      0.083      4.494      0.000 

 

Residual Variances = RESIDUAL VARIANCE OF LOWER-ORDER FACTORS (IN R MATRIX DIAGONAL) 

    T1                 0.044      0.011      4.110      0.000 

    T2                 0.044      0.011      4.110      0.000 

    T3                 0.044      0.011      4.110      0.000 

    T4                 0.044      0.011      4.110      0.000 

 

 

Does the latent basis change model 

(5a) fit worse than the partial residual 

variance model (4b)?  

Yes, −2ΔLL(df=6) = 13.658, p = .0337 

MODEL MODIFICATION INDICES (truncated) 

             M.I.     E.P.C.  

Means/Intercepts/Thresholds 

[T4]      10.295     -0.194   

 

If we freed the factor intercept at T4, the 

rescaled −2ΔLL would improve by 10.295, 

and the factor intercept should be lower by 

0.194. (And no, moving the fixed loading of 

1 for the change factor to T2 instead of T4 

doesn’t solve the problem…) 

Saved DF=6… how? 

3 factor means → 1 fixed change slope 

3 factor variances and 6 covariances →  

2 loadings, 1 intercept factor variance, 1 

slope factor variance, and 1 covariance 
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Model 5b. Mplus Syntax for Revised Latent Basis Change Model—Model 5a, except freeing the 

factor intercept at T4: 

 
MODEL:  ! DATA, VARIABLE, ANALYSIS, OUTPUT are same 

 

!!!!!! 5b. Revised Latent Basis Change Model !!!!!! 

! Define latent factors (Factor = indicator loadings) 

! Factor loadings held equal over time except prose4 

  T1 BY block1@5.972; T1 BY digit1* prose1* (DL PL);  

  T2 BY block2@5.972; T2 BY digit2* prose2* (DL PL); 

  T3 BY block3@5.972; T3 BY digit3* prose3* (DL PL); 

  T4 BY block4@5.972; T4 BY digit4* prose4* (DL PL4); 

 

! Indicator intercepts all held equal over time 

  [block1-block4*] (BI);  

  [digit1-digit4*] (DI); 

  [prose1-prose4*] (PI); 

 

! Indicator residual variances held equal over time 

! except block1 and digit1 

  block1* (BR1); block2-block4* (BR);  

  digit1* (DR1); digit2-digit4* (DR); 

  prose1-prose4* (PR); 

 

! Same-indicator residual covariances over time 

  block1-block4 WITH block1-block4*; 

  digit1-digit4 WITH digit1-digit4*; 

  prose1-prose4 WITH prose1-prose4*; 

 

! Latent factor mean=0 at all occasions so that all mean change  

! is captured by the intercept and slope factors' fixed effects 

  [T1@0 T2@0 T3@0 T4*]; ! T4 int now free 

! Latent factor variance held equal over time (like diagonal R matrix) 

! so all heterogeneity of variance is captured by slope factor variance 

   T1* T2* T3* T4* (ResVar); 

! Latent factor covariances (all possible pairs) SHUT OFF @0 so that 

! all covariance over time is captured by intercept and slope factor variances 

   T1 T2 T3 T4 WITH T1@0 T2@0 T3@0 T4@0; 

 

! Define new higher-order intercept and latent basis change factors 

  Int BY T1@1 T2@1 T3@1 T4@1; 

  Slp BY T1@0 T2*  T3*  T4@1; 

! Higher-order factor means = fixed effects 

  [Int@0 Slp*]; ! Fixed int = 0 for identification 

! Higher-order factor variances = random effect variances 

  Int* Slp*;  

! Higher-order factor covariance = random effects covariance 

  Int WITH Slp*;  

 

Model 5b. Mplus Output for Revised Latent Basis Change Model: 
 

Number of Free Parameters                       37 → Saved DF=5 now 

Loglikelihood 

          H0 Value                      -13146.993 

          H0 Scaling Correction Factor      1.1808 

            for MLR 

          H1 Value                      -13121.771 

          H1 Scaling Correction Factor      1.0595 

            for MLR 

Information Criteria 

          Akaike (AIC)                   26367.987 

          Bayesian (BIC)                 26533.805 

          Sample-Size Adjusted BIC       26416.330 

            (n* = (n + 2) / 24) 

Chi-Square Test of Model Fit 

          Value                             51.749* 

          Degrees of Freedom                    53 

          P-Value                           0.5230 

Does the revised latent basis change model 

(5b) fit worse than the partial residual 

variance model (4b)?  

No, −2ΔLL(df=5) = 4.274, p = .5106 

Saved DF=5… how? 

3 factor means → 1 fixed change slope +1 int 

3 factor variances and 6 covariances →  

2 loadings, 1 intercept factor variance, 1 slope 

factor variance, and 1 covariance 
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          Scaling Correction Factor         0.9748 

            for MLR 

RMSEA (Root Mean Square Error Of Approximation) 

          Estimate                           0.000 

          90 Percent C.I.                    0.000  0.024 

          Probability RMSEA <= .05           1.000 

CFI/TLI 

          CFI                                1.000 

          TLI                                1.000 

SRMR (Standardized Root Mean Square Residual) 

          Value                              0.027 

 

FULL MODEL RESULTS  

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

 

FACTOR LOADINGS EQUAL FOR SAME OUTCOME OVER TIME EXCEPT PROSE4  

T1       BY 

    BLOCK1             5.972      0.000    999.000    999.000 

    DIGIT1            10.574      0.347     30.459      0.000 

    PROSE1             3.362      0.128     26.327      0.000 

 T2       BY 

    BLOCK2             5.972      0.000    999.000    999.000 

    DIGIT2            10.574      0.347     30.459      0.000 

    PROSE2             3.362      0.128     26.327      0.000 

 T3       BY 

    BLOCK3             5.972      0.000    999.000    999.000 

    DIGIT3            10.574      0.347     30.459      0.000 

    PROSE3             3.362      0.128     26.327      0.000 

 T4       BY 

    BLOCK4             5.972      0.000    999.000    999.000 

    DIGIT4            10.574      0.347     30.459      0.000 

    PROSE4             3.921      0.177     22.130      0.000 = PL4     

NEW HIGHER-ORDER FACTOR LOADINGS 

 INT      BY 

    T1                 1.000      0.000    999.000    999.000 

    T2                 1.000      0.000    999.000    999.000 

    T3                 1.000      0.000    999.000    999.000 

    T4                 1.000      0.000    999.000    999.000 

 SLP      BY 

    T1                 0.000      0.000    999.000    999.000 

    T2                 0.329      0.057      5.792      0.000 → 32.9% of change by T2 

    T3                 0.752      0.084      8.977      0.000 → 75.2% of change by T3 

    T4                 1.000      0.000    999.000    999.000 

DISTURBANCES COVARIANCES FOR FACTORS SHUT OFF (LIKE NO RESIDUAL COVARIANCE IN R) 

T1       WITH 

    T2                 0.000      0.000    999.000    999.000 

    T3                 0.000      0.000    999.000    999.000 

    T4                 0.000      0.000    999.000    999.000 

 T2       WITH 

    T3                 0.000      0.000    999.000    999.000 

    T4                 0.000      0.000    999.000    999.000 

 T3       WITH 

    T4                 0.000      0.000    999.000    999.000 

HIGHER-ORDER FACTOR COVARIANCE = RANDOM EFFECTS COVARIANCE (IN G MATRIX) 

 INT      WITH 

    SLP                0.009      0.052      0.182      0.856 

RESIDUAL COVARIANCES FOR SAME INDICATOR OVER TIME (FREELY ESTIMATED) 

 BLOCK1   WITH 

    BLOCK2             7.535      1.199      6.282      0.000 

    BLOCK3             8.122      1.251      6.490      0.000 

    BLOCK4             6.569      1.455      4.516      0.000 

 BLOCK2   WITH 

    BLOCK3             7.210      1.176      6.130      0.000 

    BLOCK4             4.510      1.304      3.458      0.001 

 BLOCK3   WITH 

    BLOCK4             6.207      1.367      4.539      0.000 

 DIGIT1   WITH 

    DIGIT2             9.229      3.285      2.809      0.005 

    DIGIT3             6.952      3.520      1.975      0.048 

    DIGIT4             7.552      3.622      2.085      0.037 

 DIGIT2   WITH 

    DIGIT3             7.658      3.452      2.218      0.027 

    DIGIT4             7.915      3.410      2.321      0.020 
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 DIGIT3   WITH 

    DIGIT4             2.184      3.642      0.600      0.549 

 PROSE1   WITH 

    PROSE2             4.942      0.618      8.001      0.000 

    PROSE3             4.335      0.677      6.403      0.000 

    PROSE4             4.732      0.846      5.596      0.000 

 PROSE2   WITH 

    PROSE3             5.273      0.618      8.537      0.000 

    PROSE4             5.327      0.849      6.275      0.000 

 PROSE3   WITH 

    PROSE4             6.274      0.673      9.317      0.000 

HIGHER-ORDER FACTOR MEANS = FIXED INTERCEPT=0 FOR IDENTIFICATION, FIXED SLOPE 

 Means 

    INT                0.000      0.000    999.000    999.000 

    SLP               -0.340      0.050     -6.752      0.000 → Total mean decline over time 

INTERCEPTS FOR SAME INDICATOR HELD EQUAL OVER TIME (SO CHANGE IS DUE TO FACTORS ONLY!)  

Intercepts 

    BLOCK1            10.245      0.282     36.364      0.000 

    BLOCK2            10.245      0.282     36.364      0.000 

    BLOCK3            10.245      0.282     36.364      0.000 

    BLOCK4            10.245      0.282     36.364      0.000 

    DIGIT1            21.095      0.479     44.045      0.000 

    DIGIT2            21.095      0.479     44.045      0.000 

    DIGIT3            21.095      0.479     44.045      0.000 

    DIGIT4            21.095      0.479     44.045      0.000 

    PROSE1             8.423      0.175     48.083      0.000 

    PROSE2             8.423      0.175     48.083      0.000 

    PROSE3             8.423      0.175     48.083      0.000 

    PROSE4             8.423      0.175     48.083      0.000 

    T1                 0.000      0.000    999.000    999.000 

    T2                 0.000      0.000    999.000    999.000 

    T3                 0.000      0.000    999.000    999.000 

    T4                -0.145      0.040     -3.638      0.000 → NEW MEAN DEVIATION FOR T4 

FACTOR VARIANCES = RANDOM EFFECT VARIANCES (IN G MATRIX) 

 Variances 

    INT                0.994      0.070     14.106      0.000 

    SLP                0.366      0.076      4.837      0.000 

INDICATOR "NOT THE FACTOR" LEFTOVER VARIANCES AND RESIDUAL VARIANCE (IN R MATRIX DIAGONAL) 

 Residual Variances 

    BLOCK1            19.393      1.615     12.005      0.000 = BR1 

    BLOCK2            13.651      1.211     11.271      0.000 

    BLOCK3            13.651      1.211     11.271      0.000 

    BLOCK4            13.651      1.211     11.271      0.000 

    DIGIT1            32.163      4.317      7.450      0.000 = DR1 

    DIGIT2            23.748      3.110      7.637      0.000 

    DIGIT3            23.748      3.110      7.637      0.000 

    DIGIT4            23.748      3.110      7.637      0.000 

    PROSE1             9.920      0.541     18.334      0.000 

    PROSE2             9.920      0.541     18.334      0.000 

    PROSE3             9.920      0.541     18.334      0.000 

    PROSE4             9.920      0.541     18.334      0.000 

    T1                 0.040      0.010      3.915      0.000 

    T2                 0.040      0.010      3.915      0.000 

    T3                 0.040      0.010      3.915      0.000 

    T4                 0.040      0.010      3.915      0.000 

 

  
 

Comparing model-predicted factor 

means and variances as given by 

TECH4 output (at the very end): 
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How were these lower-order latent variable means and variances predicted by the latent basis 

(“curve of factors”) model? (See excel for computations) 

 
𝑴𝒆𝒂𝒏 = 𝑰𝒏𝒕𝑴𝒆𝒂𝒏 + 𝑺𝒍𝒐𝒑𝒆𝑴𝒆𝒂𝒏(𝑭𝒂𝒄𝒕𝒐𝒓𝑳𝒐𝒂𝒅𝒊𝒏𝒈 = 𝑻𝒊𝒎𝒆) + 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏𝑰𝒏𝒕𝒆𝒓𝒆𝒑𝒕 
𝑀𝑒𝑎𝑛𝑇1 =  0.000 − 0.340(0.000) − 0.000 =     0.000 
𝑀𝑒𝑎𝑛𝑇2 =  0.000 − 0.340(0.329) − 0.000 = −0.112 
𝑀𝑒𝑎𝑛𝑇3 =  0.000 − 0.340(0.752) − 0.000 = −0.256 
𝑀𝑒𝑎𝑛𝑇4 =  0.000 − 0.340(1.000) − 0.145 = −0.485 

 

𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆 = 𝑰𝒏𝒕𝑽𝒂𝒓 + 𝑺𝒍𝒐𝒑𝒆𝑽𝒂𝒓(𝑭𝒂𝒄𝒕𝒐𝒓𝑳𝒐𝒂𝒅𝒊𝒏𝒈𝟐 = 𝑻𝒊𝒎𝒆𝟐) + 𝑪𝒐𝒗𝒂𝒓(𝟐 ∗ 𝑻𝒊𝒎𝒆) + 𝑹𝒆𝒔𝑽𝒂𝒓 
𝑉𝑎𝑟𝑇1 =  0.994 + 0.366(0.0002) + 0.009(2 ∗ 0.000)  + 0.040 = 1.034 
𝑉𝑎𝑟𝑇2 =  0.994 + 0.366(0.3292) + 0.009(2 ∗ 0.329)  + 0.040 = 1.080 
𝑉𝑎𝑟𝑇3 =  0.994 + 0.366(0.7522) + 0.009(2 ∗ 0.752)  + 0.040 = 1.255 
𝑉𝑎𝑟𝑇4 =  0.994 + 0.366(1.0002) + 0.009(2 ∗ 1.000)  + 0.040 = 1.418 

 

Sample results section for these longitudinal invariance and “curve of factor” models: 

The extent of individual differences in change over time (four occasions collected at two-year intervals) in a latent factor of 

cognition (with three observed indicators: block design, digit–symbol substitution, and prose recall) was examined using 

Mplus v. 8.11 (Muthén & Muthén, 1998–2017). Robust maximum likelihood (MLR) estimation was used for all analyses; 

nested model comparisons were conducted using the rescaled difference in the model −2LL values with degrees of freedom 

equal to the difference in the number of model parameters. Prior to examining change in the latent factor over time, partial 

longitudinal measurement invariance was established by a series of nested models, as described next.  

 

[Table 1 would have the fit of each model, as shown in the excel workbook for this example. Depending on the journal, you 

may need to add text defining each fit index and what is considered “good fit” for each. You could also make a Table 2 for 

all the LRTs instead of giving them in the text as I did below.] 

 
 
First, a configural invariance model was specified in which four correlated factors (i.e., one factor for each occasion) were 

estimated simultaneously; all factor means were fixed to 0 and all factor variances were fixed to 1 for identification. 

Residual covariances for the same indicator across the four occasions were also estimated. As shown in Table 1, the 

configural invariance model had excellent fit by every index, indicating that the 12 indicator means, variances, and 

covariances were recreated well by the model.  

 

Equality of the unstandardized factor loadings across occasions was then examined in a metric invariance model. The factor 

variance was fixed to 1 at occasion 1 for identification but was freely estimated at occasions 2, 3, and 4. The factor means 

were all fixed to 0 for identification. All factor loadings were constrained equal across occasions, but all indicator intercepts 

and residual variances varied over time. Factor covariances and same-occasion indicator residual covariances were 

estimated as described previously. Although the metric invariance model had excellent global fit, it fit significantly worse 

than the configural invariance model, −2ΔLL(6) = 15.09, p = .020. Modification indices suggested that the loading of prose 

recall at occasion 4 was a significant source of local misfit and should be freed. After doing so, the partial metric invariance 

model had excellent fit (as shown in Table 1) that was not significantly worse than the configural invariance model, 

−2ΔLL(5) = 4.13, p = .531. The fact that partial metric invariance (i.e., “weak invariance”) held indicates that the same 

Model
# Free

Parms

Chi-Square

Value

Chi-Square

Scale Factor

Chi-Square

DF

Chi-Square

p-value
CFI

RMSEA

Estimate

RMSEA

Lower CI

RMSEA

Higher CI

RMSEA

p-value

1. Configural Model 60 27.704 1.0039 30 0.5861 1.000 0.000 0.000 0.027 1.000

2a. Full Metric Invariance 54 41.112 0.9696 36 0.2566 0.999 0.015 0.000 0.033 1.000

2b. Partial Metric (- PL4) 55 31.925 0.9729 35 0.6173 1.000 0.000 0.000 0.025 1.000

3a. Full Scalar Invariance 49 38.075 0.9739 41 0.6014 1.000 0.000 0.000 0.024 1.000

4a. Full Residual Variance 40 74.477 0.9647 50 0.0140 0.993 0.027 0.013 0.040 0.999

4b. Partial Residual Variance (- BR1, -DR1) 42 47.525 0.9672 48 0.4922 1.000 0.000 0.000 0.025 1.000

5a. Latent Basis 36 61.458 0.9715 54 0.2265 0.998 0.015 0.000 0.030 1.000

5b. Revised Latent Basis 37 51.749 0.9748 53 0.5230 1.000 0.000 0.000 0.024 1.000

Table 1 Model Fit
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latent factor was being measured at each occasion, or that the indicators were related to their latent factor equivalently over 

time (except for prose recall, which was slightly more related to its factor at occasion 4 than at occasions 1, 2, or 3).  

 

Equality of the unstandardized indicator intercepts across occasions was then examined in a scalar invariance model. The 

factor mean and variance at occasion 1 were fixed to 0 and 1, respectively, for identification, but the factor means and 

variances were then estimated at occasions 2, 3, and 4. All factor loadings (except for prose recall at occasion 4) and all 

indicator intercepts were constrained equal across occasions; all indicator residual variances still differed over time. Factor 

covariances and same-occasion residual covariances were estimated as described previously. The scalar invariance model 

had excellent fit (as shown in Table 1) that was not significantly worse than the partial metric invariance model, −2ΔLL(6) 

= 6.14, p = .407. The fact that full scalar invariance (i.e., “strong invariance”) held indicates that all occasions have the 

same expected response for each indicator at the same absolute level of the latent factor, or that the observed difference in 

the indicator means across occasions 1–4 was due to factor mean differences only.  

 

Equality of the unstandardized indicator residual variances across occasions was then examined in a residual variance 

invariance model. As in the scalar invariance model, the factor mean and variance were fixed to 0 and 1, respectively, at 

occasion 1 for identification, but the factor means and variances were estimated at occasions 2, 3, and 4. All factor loadings 

(except for prose recall at occasion 4), all outcome intercepts, and all indicator residual variances were constrained to be 

equal over time. Factor covariances and same-occasion indicator residual covariances were estimated as described 

previously. Although the residual variance invariance model had excellent global fit, it fit significantly worse than the 

scalar invariance model, −2ΔLL(9) = 37.68, p < .001. Modification indices suggested that the residual variances of block 

design and digit–symbol substitution at occasion 1 were the largest sources of misfit and should be freed. After doing so, 

the partial residual variance invariance model had excellent fit (as shown in Table 1) that was not significantly worse than 

the scalar invariance model, −2ΔLL(7) = 9.58, p = .214. The fact that partial residual variance invariance (i.e., “strict 

invariance”) held indicates that the amount of indicator variance not accounted for by the latent factor was the same across 

time (except for block design and digit–symbol substitution, for which there was more residual variance at occasion 1). 

 

In the final invariance model, the factor means showed increasing decline over time, while the factor variances showed 

increasing individual differences over time. The occasion-specific factors were highly correlated (r ≈ .8 to .9). The extent to 

which two higher-order factors—for an intercept and latent basis change (i.e., in a “curve of factors model”)—could 

recreate the lower-order factor means, variances, and covariances was then examined. To create a meaningful model scale, 

the factor loading for block design was fixed to 5.972, its value from the last invariance model in which the occasion 1 

factor variance was fixed to 1. Consequently, the total SD will be ≈ 1 for occasion 1, setting the scale of the latent factor. 

All lower-order factor variances were estimated but constrained equal over time so that any heterogeneity of variance over 

time in the lower-order factors would be captured by the higher-order factor for latent basis change. Likewise, all lower-

order factor covariances were fixed to 0 so that all factor correlation over time would be captured by the estimated variance 

of the higher-order factors for intercept and latent basis change (and their estimated covariance). All lower-order factor 

intercepts and the mean of the higher-order intercept factor were fixed to 0 for identification given the estimation of the 

indicator intercepts. All same-occasion indicator residual covariances were estimated as in previous models. Finally, the 

latent basis factor loadings were fixed to 0 and 1 at occasions 1 and 4, respectively, with estimated factor loadings at 

occasions 2 and 3. Consequently, the higher-order intercept factor will capture the expected latent factor at occasion 1, and 

the mean of the higher-order latent basis change factor will capture the amount of overall change in the latent factor across 

the four occasions (whose time values are then replaced by the latent basis factor loadings).  

 

Although the latent basis change model had excellent fit, it fit significantly worse than the last invariance model, −2ΔLL(6) 

= 13.66, p = .034. Modification indices suggested that the occasion 4 factor intercept was the largest source of misfit and 

should be freed. After doing so, the latent basis change invariance model had excellent fit (as shown in Table 1) that was 

not significantly worse than the last invariance model, −2ΔLL(5) = 4.27, p = .511. Figure 1 displays the predicted lower-

order factor means and variances for each occasion. There was a significant average decline of 0.340 (as given by the mean 

of the higher-order factor for latent basis change), 32.9% and 75.2% of which happened by occasions 2 and 3, respectively. 

The occasion 4 intercept (capturing its deviation from the predicted trajectory) was significantly negative (–0.145). Wald 

tests* indicated significant individual differences in the predicted latent outcome at occasion 1 and in its subsequent 

decline, as captured by the variances of the higher-order intercept and latent basis change factors, respectively.  

 

* Yes, I know that Wald tests should not be used for testing the significance of variances, but this is very common in SEM 

world. In this case, the likelihood ratio tests would have agreed, and so I didn’t report those additional model comparisons. 
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If longitudinal measurement falls apart, or the extent of “common” change across outcomes  

is of interest, the alternative set of latent variable models below might be more useful…  

Normally I would start with univariate growth models to ensure adequate fit of each (as shown for 

unbalanced time in Example 4a) before moving to a multivariate growth model, but I’m skipping 

ahead for brevity here. I am using a latent basis model for nonlinear trajectories here, but you could 

use whichever pattern of change makes the most sense and fits relatively best.  

 

Model 6a. Mplus Syntax for a Multivariate Growth Model—also known as a “Parallel Process” 

Model—separate but simultaneous [latent basis] growth models per indicator, with all latent intercept, 

slopes, and same–occasion correlated residuals: 
 
MODEL:  ! DATA, VARIABLE, ANALYSIS, OUTPUT are same 

 

!!!!!! 6a. Latent Basis Growth Model per Indicator !!!!!! 

!!!!!! All Possible Factor and Same-Occasion Residual 

Correlations !!!!! 

 

! Latent basis growth model per indicator 

  IntB BY block1@1 block2@1 block3@1 block4@1; 

  IntP BY prose1@1 prose2@1 prose3@1 prose4@1; 

  IntD BY digit1@1 digit2@1 digit3@1 digit4@1; 

  SlpB BY block1@0 block2*  block3*  block4@1; 

  SlpD BY digit1@0 digit2*  digit3*  digit4@1;  

  SlpP BY prose1@0 prose2*  prose3*  prose4@1; 

 

! Shut off indicator intercepts 

  [block1-block4@0];  

  [digit1-digit4@0]; 

  [prose1-prose4@0]; 

 

! Constrain indicator residual  

! variances equal over time 

  block1-block4* (BR);  

  digit1-digit4* (DR); 

  prose1-prose4* (PR); 

 

! Same-occasion indicator residual covariances 

  block1 digit1 prose1 WITH block1* digit1* prose1*; 

  block2 digit2 prose2 WITH block2* digit2* prose2*; 

  block3 digit3 prose3 WITH block3* digit3* prose3*; 

  block4 digit4 prose4 WITH block4* digit4* prose4*; 

 

! Latent factor means estimated 

  [IntB* IntD* IntP* SlpB* SlpD* SlpP*]; 

! Latent factor variances estimated 

  IntB* IntD* IntP* SlpB* SlpD* SlpP*; 

! Latent factor covariances (all possible pairs) 

  IntB IntD IntP SlpB SlpD SlpP WITH IntB* IntD* IntP* SlpB* SlpD* SlpP*; 

 

MODEL FIT INFORMATION 

Number of Free Parameters                       48 

Loglikelihood 

          H0 Value                      -13153.430 

          H0 Scaling Correction Factor      1.1382 

            for MLR 

          H1 Value                      -13121.771 

          H1 Scaling Correction Factor      1.0595 

            for MLR 

Information Criteria 

          Akaike (AIC)                   26402.860 

          Bayesian (BIC)                 26617.976 

          Sample-Size Adjusted BIC       26465.576 

            (n* = (n + 2) / 24) 

 

Example image borrowed from here would 

have 3 growth models instead and residual 

covariances for same-occasion indicators 

https://www.sciencedirect.com/topics/psychology/latent-growth-model
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Chi-Square Test of Model Fit 

          Value                             65.306* 

          Degrees of Freedom                    42 

          P-Value                           0.0121 

          Scaling Correction Factor         0.9696 

            for MLR 

RMSEA (Root Mean Square Error Of Approximation) 

 

          Estimate                           0.029 

          90 Percent C.I.                    0.014  0.042 

          Probability RMSEA <= .05           0.997 

CFI/TLI 

          CFI                                0.993 

          TLI                                0.989 

SRMR (Standardized Root Mean Square Residual) 

          Value                              0.022 

 

MODEL RESULTS 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

PER-OUTCOME LATENT BASIS GROWTH MODELS 

 INTB     BY 

    BLOCK1             1.000      0.000    999.000    999.000 

    BLOCK2             1.000      0.000    999.000    999.000 

    BLOCK3             1.000      0.000    999.000    999.000 

    BLOCK4             1.000      0.000    999.000    999.000 

INTD     BY 

    DIGIT1             1.000      0.000    999.000    999.000 

    DIGIT2             1.000      0.000    999.000    999.000 

    DIGIT3             1.000      0.000    999.000    999.000 

    DIGIT4             1.000      0.000    999.000    999.000 

INTP     BY 

    PROSE1             1.000      0.000    999.000    999.000 

    PROSE2             1.000      0.000    999.000    999.000 

    PROSE3             1.000      0.000    999.000    999.000 

    PROSE4             1.000      0.000    999.000    999.000 

SLPB     BY 

    BLOCK1             0.000      0.000    999.000    999.000 

    BLOCK2             0.349      0.074      4.695      0.000 

    BLOCK3             0.637      0.072      8.900      0.000 

    BLOCK4             1.000      0.000    999.000    999.000 

SLPD     BY 

    DIGIT1             0.000      0.000    999.000    999.000 

    DIGIT2             0.282      0.053      5.297      0.000 

    DIGIT3             0.570      0.102      5.612      0.000 

    DIGIT4             1.000      0.000    999.000    999.000 

SLPP     BY 

    PROSE1             0.000      0.000    999.000    999.000 

    PROSE2             0.289      0.084      3.440      0.001 

    PROSE3             0.707      0.095      7.431      0.000 

    PROSE4             1.000      0.000    999.000    999.000 

 

LATENT INTERCEPT AND SLOPE LEVEL-2 COVARIANCES (= RANDOM EFFECT COVARIANCES) 

 INTB     WITH 

    INTD              65.009      4.136     15.720      0.000 

    INTP              19.112      1.413     13.523      0.000 

    SLPB              -5.262      2.523     -2.086      0.037 

    SLPD              -0.952      5.129     -0.186      0.853 

    SLPP               4.005      2.097      1.910      0.056 

 INTD     WITH 

    INTP              33.788      2.539     13.307      0.000 

    SLPB              -2.938      4.386     -0.670      0.503 

    SLPD              -2.006      7.366     -0.272      0.785 

    SLPP               5.073      3.246      1.563      0.118 

 INTP     WITH 

    SLPB               0.007      1.642      0.004      0.996 

    SLPD               1.565      3.434      0.456      0.649 

    SLPP               0.921      1.138      0.809      0.418 

 SLPB     WITH 
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    SLPD              27.355      6.518      4.197      0.000 

    SLPP               8.267      2.532      3.265      0.001 

 SLPD     WITH 

    SLPP              15.079      4.654      3.240      0.001 

 

SAME-OCCASION INDICATOR LEVEL-1 RESIDUAL COVARIANCES 

BLOCK1   WITH 

    DIGIT1            -0.062      1.679     -0.037      0.971 

    PROSE1             0.683      0.759      0.899      0.369 

 DIGIT1   WITH 

    PROSE1             1.314      1.241      1.059      0.289 

 BLOCK2   WITH 

    DIGIT2             3.408      1.267      2.690      0.007 

    PROSE2             0.642      0.521      1.233      0.218 

 DIGIT2   WITH 

    PROSE2             1.530      0.963      1.589      0.112 

 BLOCK3   WITH 

    DIGIT3             4.477      1.251      3.579      0.000 

    PROSE3             1.791      0.580      3.090      0.002 

 DIGIT3   WITH 

    PROSE3             1.120      1.135      0.987      0.324 

 BLOCK4   WITH 

    DIGIT4             2.599      2.027      1.283      0.200 

    PROSE4             0.639      1.022      0.625      0.532 

 DIGIT4   WITH 

    PROSE4             4.202      1.665      2.524      0.012 

 

LATENT FACTOR MEANS (= FIXED INTERCEPTS AND SLOPES) 

 Means 

    INTB              10.264      0.298     34.490      0.000 

    INTP               8.541      0.184     46.318      0.000 

    INTD              21.188      0.500     42.365      0.000 

    SLPB              -2.545      0.330     -7.718      0.000 

    SLPD              -5.093      0.681     -7.483      0.000 

    SLPP              -1.830      0.266     -6.885      0.000 

INDICATOR INTERCEPTS (FIXED TO 0 SO CHANGE IS CAPTURED BY LATENT FACTORS) 

 Intercepts 

    BLOCK1             0.000      0.000    999.000    999.000 

    BLOCK2             0.000      0.000    999.000    999.000 

    BLOCK3             0.000      0.000    999.000    999.000 

    BLOCK4             0.000      0.000    999.000    999.000 

    DIGIT1             0.000      0.000    999.000    999.000 

    DIGIT2             0.000      0.000    999.000    999.000 

    DIGIT3             0.000      0.000    999.000    999.000 

    DIGIT4             0.000      0.000    999.000    999.000 

    PROSE1             0.000      0.000    999.000    999.000 

    PROSE2             0.000      0.000    999.000    999.000 

    PROSE3             0.000      0.000    999.000    999.000 

    PROSE4             0.000      0.000    999.000    999.000 

LATENT FACTOR LEVEL-2 VARIANCES (= RANDOM INTERCEPT AND SLOPE COVARIANCES) 

    INTB              46.995      2.722     17.262      0.000 

    INTP              15.812      0.986     16.041      0.000 

    INTD             121.283      7.985     15.189      0.000 

    SLPB              17.592      3.853      4.566      0.000 

    SLPD              46.858     11.460      4.089      0.000 

    SLPP               6.887      1.938      3.553      0.000 

Residual Variances -- INDICATOR LEVEL-1 RESIDUAL VARIANCES 

    BLOCK1             9.197      0.638     14.410      0.000 

    BLOCK2             9.197      0.638     14.410      0.000 

    BLOCK3             9.197      0.638     14.410      0.000 

    BLOCK4             9.197      0.638     14.410      0.000 

    DIGIT1            23.974      1.726     13.891      0.000 

    DIGIT2            23.974      1.726     13.891      0.000 

    DIGIT3            23.974      1.726     13.891      0.000 

    DIGIT4            23.974      1.726     13.891      0.000 

    PROSE1             5.135      0.403     12.750      0.000 

    PROSE2             5.135      0.403     12.750      0.000 

    PROSE3             5.135      0.403     12.750      0.000 

    PROSE4             5.135      0.403     12.750      0.000 
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ESTIMATED CORRELATION MATRIX FOR THE LATENT VARIABLES -- FROM TECH4 (LAST) 

         INTB       INTP       INTD       SLPB      SLPD 

         ________   ________   ________   ________  ________ 

 INTB      1.000 

 INTP      0.701      1.000 

 INTD      0.861      0.772      1.000 

 SLPB     -0.183      0.000     -0.064      1.000 

 SLPD     -0.020      0.058     -0.027      0.953     1.000 

 SLPP      0.223      0.088      0.176      0.751     0.839 

 

 

Model 6b. Mplus Syntax for a “Factor of Curves” Model—Separate but simultaneous latent basis 

growth models per indicator, with same–occasion correlated residuals, but replacing the covariances 

among the six intercept and slope factors with two correlated higher-order factors: 
 
MODEL:  ! DATA, VARIABLE, ANALYSIS, OUTPUT are same 

 

!!!!!! 6b. Latent Basis Growth Model per Indicator !!!!!! 

!!!!!! Factor Correlations Replaced by Higher-Order Factors !!!!! 

 

! Latent basis growth model per indicator 

  IntB BY block1@1 block2@1 block3@1 block4@1; 

  IntP BY prose1@1 prose2@1 prose3@1 prose4@1; 

  IntD BY digit1@1 digit2@1 digit3@1 digit4@1; 

  SlpB BY block1@0 block2*  block3*  block4@1; 

  SlpD BY digit1@0 digit2*  digit3*  digit4@1;  

  SlpP BY prose1@0 prose2*  prose3*  prose4@1; 

 

! Shut off indicator intercepts 

  [block1-block4@0];  

  [digit1-digit4@0]; 

  [prose1-prose4@0]; 

 

! Constrain indicator residual variances equal over time 

  block1-block4* (BR);  

  digit1-digit4* (DR); 

  prose1-prose4* (PR); 

 

! Same-occasion indicator residual covariances 

  block1 digit1 prose1 WITH block1* digit1* prose1*; 

  block2 digit2 prose2 WITH block2* digit2* prose2*; 

  block3 digit3 prose3 WITH block3* digit3* prose3*; 

  block4 digit4 prose4 WITH block4* digit4* prose4*; 

 

! Latent factor intercepts estimated 

  [IntB* IntD* IntP* SlpB* SlpD* SlpP*]; 

! Latent factor disturbance variances estimated 

  IntB* IntD* IntP* SlpB* SlpD* SlpP*; 

 

!!!!! BEGIN NEW PART: Higher-order factors !!!!!!!!! 

  IntHO BY IntB* IntD* IntP*; 

  SlpHO BY SlpB* SlpD* SlpP* (SlpLB SlpLD SlpLP); ! Labels for MODEL CONSTRAINT below 

  

! Higher-order factor means fixed to 0 for identification 

  [IntHO@0 SlpHO@0]; 

! Higher-order factor variances fixed to 1 for identification 

  IntHO@1 SlpHO@1; 

! Higher-order factor covariance estimated 

  IntHO WITH SlpHO*;   

 

MODEL CONSTRAINT: 

SlpLB>0; SlpLD>0; SlpLP>0; ! Force unstandardized slope factor loadings to be positive 

 

 

My first attempt resulted in negative unstandardized loadings for the higher-order slope factor, which I 

thought could be confusing, so I then added model constraints to force them to stay positive. 

This table motivates the next model—to 

what extent are the correlations among the 

latent intercept factors consistent with a 

higher-order factor (and is the same true 

separately for the latent slope factors)? 
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MODEL FIT INFORMATION 

Number of Free Parameters                       43 

Loglikelihood 

          H0 Value                      -13157.166 

          H0 Scaling Correction Factor      1.1599 

            for MLR 

          H1 Value                      -13121.771 

          H1 Scaling Correction Factor      1.0595 

            for MLR 

Information Criteria 

          Akaike (AIC)                   26400.331 

          Bayesian (BIC)                 26593.039 

          Sample-Size Adjusted BIC       26456.514 

            (n* = (n + 2) / 24) 

Chi-Square Test of Model Fit 

          Value                             73.157* 

          Degrees of Freedom                    47 

          P-Value                           0.0086 

          Scaling Correction Factor         0.9676 

            for MLR 

RMSEA (Root Mean Square Error Of Approximation) 

          Estimate                           0.029 

          90 Percent C.I.                    0.015  0.042 

          Probability RMSEA <= .05           0.998 

CFI/TLI 

          CFI                                0.992 

          TLI                                0.989 

SRMR (Standardized Root Mean Square Residual) 

          Value                              0.029 

 

STANDARDIZED MODEL RESULTS -- RELEVANT OUTPUT FOR HIGHER-ORDER FACTORS ONLY: 

                                                    Two-Tailed 

                    Estimate       S.E.  Est./S.E.    P-Value 

 

INTHO    BY -- COMMON HIGHER-ORDER INTERCEPT FACTOR LOADINGS 

    INTB               0.875      0.023     38.848      0.000 

    INTD               0.964      0.020     49.254      0.000 

    INTP               0.819      0.024     34.845      0.000 

 SLPHO    BY  -- COMMON HIGHER ORDER LATENT CHANGE FACTOR LOADINGS 

    SLPB               0.903      0.099      9.105      0.000 

    SLPD               0.958      0.100      9.577      0.000 

    SLPP               0.944      0.114      8.253      0.000 

INTHO    WITH  COMMON HIGHER-ORDER FACTOR CORRELATION  

    SLPHO              0.045      0.112      0.402      0.688 

 

Example image borrowed from here would 

add residual covariances for same-occasion 

indicators and disturbance covariance for 

the latent factors for the same variable 

Does the “factor of curves” model (6b)  fit 

worse than the multivariate all correlations 

model (6a)?  

No, −2ΔLL(df=5) = 7.852, p = .1646 

Saved DF=5… how? 

3 intercept covariances → 3 HO intercept loadings 

3 change covariances → 3 HO change loadings  

6 intercept–change covariances across outcomes   

   → 1 HO intercept–change covariance  

and 6 covariances →  

2 loadings, 1 intercept factor variance, 1 slope 

factor variance, and 1 covariance 

https://doi.org/10.1037/fam0000379
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SAME-VARIABLE INTERCEPT-CHANGE FACTOR CORRELATIONS  

INTB     WITH 

    SLPB              -0.803      0.234     -3.428      0.001 

 INTD     WITH 

    SLPD              -0.428      0.462     -0.928      0.354 

 INTP     WITH 

    SLPP              -0.388      0.284     -1.367      0.172 

 

 

 

Sample results section for these “factor of curve” models: 

The extent of relations for individual differences in change over time (four occasions collected at two-year intervals) in 

three observed indicators (block design, digit–symbol substitution, and prose recall) was examined using Mplus v. 8.11 

(Muthén & Muthén, 1998–2017). Robust maximum likelihood (MLR) estimation was used for all analyses; nested model 

comparisons were conducted using the rescaled difference in the model −2LL values with degrees of freedom equal to the 

difference in the number of model parameters. For each outcome, we examined change over time using a latent basis factor, 

whose loadings were fixed to 0 and 1 at occasions 1 and 4, respectively, with estimated factor loadings at occasions 2 and 

3. Consequently, the intercept factors will capture the expected latent factor at occasion 1, and the mean of the latent basis 

change factor will capture the amount of overall change in the latent factor across the four occasions (whose time values are 

then replaced by the latent basis factor loadings). [Would describe results for each univariate model of change first.] 

 

We then examined relations of latent intercept and latent basis change factors across the three observed outcomes in a 

multivariate model predicting each outcome (over four occasions, for 12 outcomes in total). As reported in [Table with 

latent variable correlations from Model 6a], the intercept factors were correlated .70, .86, and .77, indicating evidence of a 

common factor for cognition at the first occasion. Likewise, the latent basis change factors were correlated .95, .75, and .84, 

indicating evidence of a common factor for change in cognition over the four occasions. We then examined the extent to 

which the intercept correlations and latent change correlations could be adequately reproduced by common latent intercept 

and latent change factors, respectively, as well as the extent to which the correlations across the intercepts and slopes could 

be reproduced by a single correlation between the higher-order intercept and change factors. The resulting “factor of 

curves” model fit nonsignificantly worse, −2ΔLL(5) = 7.852, p = .1646, indicating successful correlation reproduction. 


