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Example 4b: Latent Factor Models for Change over Time using Single-Level Structural
Equation Modeling (SEM): Invariance, Curve of Factors, and Factor of Curves
(complete syntax and output available for Mplus 8.11 electronically)

These real data (N = 653) come from the Octogenarian Twin Study of Aging in Sweden. | am analyzing three
measures of cognition—block design, digit-symbol substitution, and prose recall—whose pattern of correlation
is consistent with a single latent factor at each occasion. For the sake of this example, | am only using four
occasions (collected at two-year intervals) and pretending these occasions are completely balanced (given that
these models are more difficult to estimate for unbalanced occasions). Likewise, | am ignoring the nesting of
individuals in twin pairs to use as many observations as possible. This analysis will involve three main steps:
(1) verifying the factor structure across occasions as a configural invariance model (model 1), (2) testing
longitudinal invariance to ensure comparable meaning of the latent factor over time (models 2a—4b), and (3)
examining whether higher-order factors for an intercept and latent basis change can adequately describe the
pattern of means, variances, and covariances over time in the latent factor (models 5a-5b), known as a “curve of
factors” model. NEW in 2025: | also added the alternative, a “factor of curves” model (6a—6b).

Model 1. Mplus Syntax for Configural Invariance—all measurement model parameters estimated
separately over time, with all factor means=0 and factor variances=1 fixed for identification:

DATA: FILE = OCTO.csv; ! Data in same folder as input
FORMAT = free; TYPE = INDIVIDUAL; ! Defaults

VARIABLE:

! Unique ID, baseline age, block design, digit symbol, prose recall
NAMES = case ageT0 blockl-block5 digitl-digit5 prosel-prose5;

! Variables to be used in the model (first four occasions only)
USEVARIABLES = blockl-block4 digitl-digit4 prosel-prose4;

! Missing data indicator
MISSING ARE ALL (-999);

ANALYSIS: TYPE = GENERAL; ESTIMATOR = MLR; ! Robust FIML estimation
OUTPUT: RESIDUAL MODINDICES (6.635) ; ! Help troubleshoot misfit

STDYX TECH4; !' Standardized solution and latent variable corrs
MODEL:

From Grimm et al. (2016), adapted

trrrrr 1. Configural Invariance Model !!ttit for three instead of four indicators

! Define latent factors (Factor = indicator loadings)
Tl BY blockl* digitl* prosel¥*;

T2 BY block2* digit2* prose2*; Time 1 . Time 2 Time T
T3 BY block3* digit3* prose3*; = o1
T4 BY block4* digitd* prosed*; A » N\ . \\‘\\g{“\

! Indicator intercepts
[blockl-block4*];
[digitl-digit4d*];
[prosel-prosed*];

! Indicator residual variances
blockl-block4*;
digitl-digitd*;
prosel-prosed*;

! Same-indicator residual covariances over time
blockl-block4 WITH blockl-block4*;
digitl-digit4 WITH digitl-digité¥*;
prosel-prosed4 WITH prosel-proseéd*;

FIGURE 14.2. Path diagram ol a longitudinal factor model with strict invariance.

! Latent factor means fixed to 0 for identification
[T1R0 T2@0 T3@O0 T4@0];

! Latent factor variances fixed to 1 for identification
T1Q@1 T2@1 T3Q@1 T4@1l;

! Latent factor covariances (all possible pairs)
Tl T2 T3 T4 WITH T1* T2* T3* T4%*;


https://snd.gu.se/en/catalogue/study/2021-195#:~:text=The%20OCTO%2DTwin%20Study%20aims,being%2C%20personality%20and%20personal%20control.
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Model 1. Mplus Output for Configural Invariance:

Number of Free Parameters 60 = 12 load, 12 int, 12 resvar, 18 res cov,
Loglikelihood and 6 factor cov
HO Value -13135.677 = Our configural invariance model LL
HO Scaling Correction Factor 1.0873 > Deviation from multiv normality=1
for MLR
H1l Value -13121.771 = Saturated=best model LL
H1 Scaling Correction Factor 1.0595 > Deviation from multiv normality=1
for MLR

Information Criteria = Smaller is better (because they start with -2LL)

Akaike (AIC) 26391.355

Bayesian (BIC) 26660.250

Sample-Size Adjusted BIC 26469.750
(n* = (n + 2) / 24)

Chi-Square Test of Model Fit

Value 27.704* - LRT for configural against saturated=best

Degrees of Freedom 30

P-Value 0.58601 . . . e

Scaling Correction Factor 10039 M.LR estlmat.lon requires a modified !_RT formula
for MLR using the scaling correlation factors given above

* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used
for chi-square difference testing in the regular way. MLM, MLR and WLSM
chi-square difference testing is described on the Mplus website. MLMV, WLSMV,
and ULSMV difference testing is done using the DIFFTEST option.

RMSEA (Root Mean Square Error Of Approximation) = How much worse than saturated model=0

Estimate 0.000
90 Percent C.I. 0.000 0.027
Probability RMSEA <= .05 1.000
CFI/TLI
CFI 1.000 = How much better than null model=0
TLI 1.000

Chi-Square Test of Model Fit for the Baseline Model

Value 3516.779 = LRT for null vs saturated (don’t need)
Degrees of Freedom 66
P-Value 0.0000

SRMR (Standardized Root Mean Square Residual) = How much worse than saturated model=0

Value 0.010
Two-Tailed
Estimate S.E. Est./S.E. P-Value
FACTOR LOADINGS - SLOPE OF FACTOR PREDICTING EACH INDICATOR
T1 BY
BLOCK1 6.046 0.239 25.275 0.000
DIGIT1 10.648 0.434 24.522 0.000
PROSE1 3.272 0.147 22.209 0.000
T2 BY
BLOCK2 6.449 0.220 29.371 0.000
DIGIT2 10.975 0.416 26.400 0.000
PROSE?2 3.558 0.152 23.400 0.000
T3 BY
BLOCK3 6.610 0.253 26.118 0.000
DIGIT3 11.624 0.453 25.672 0.000
PROSE3 3.866 0.177 21.809 0.000
T4 BY
BLOCK4 6.976 0.286 24.373 0.000
DIGIT4 12.787 0.596 21.464 0.000

PROSE4 4.690 0.194 24.172 0.000



Estimate

S.E.

Est./S.E.

Two-Tailed
P-vValue

FACTOR COVARIANCES (= CORRELATIONS BECAUSE FACTOR VARIANCES=1)

T1 WITH
T2
T3
T4

T2 WITH
T3
T4

T3 WITH
T4

RESIDUAL COVARIANCES FOR

BLOCK1
BLOCK2
BLOCK3
BLOCK4

BLOCK2
BLOCK3
BLOCK4

BLOCK3
BLOCK4

DIGIT1
DIGIT2
DIGIT3
DIGIT4

DIGIT2
DIGIT3
DIGIT4

DIGIT3
DIGIT4

PROSE1
PROSE?2
PROSE3
PROSE4

PROSE2
PROSE3
PROSE4

PROSE3
PROSE4

WITH

WITH

WITH

WITH

WITH

WITH

WITH

WITH

WITH

0.952
0.871
0.825

0.942

0.911

0.954

7.565
7.778
5.987

6.900
4.118

5.432
9.279
7.746
8.503

8.249
8.766

4.525
5.181
4.403
3.932

5.568
4.697

5.233

(e}

0

i

0.

.014
.030
.032

.022

.022

.014

.274
.261
.441

.256
.287

.473
.496
.521
.979

.404
.571

.863
.647
.708
.767

.736
.857

779

66.221
28.985
25.386

41.877
40.934

69.532

SAME INDICATOR OVER TIME

5.940
.169
4.155

o

5.492
3.200

3.687
2.654
2.200
2.137

2.423
2.455

1.171
8.011
6.218
5.127

7.566
5.480

6.720

0.000
0.000
0.000

0.000
0.000

0.000
0.000
0.000

0.000
0.001

0.000
0.008
0.028
0.033

0.015
0.014

0.241
0.000
0.000
0.000

0.000
0.000

0.000
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FACTOR MEANS (IS "MEAN" FOR ANY VARIABLE IN THE LIKELIHOOD NOT PREDICTED)

Means
Tl
T2
T3
T4

Intercepts
BLOCK1
BLOCK?2
BLOCK3
BLOCK4
DIGIT1
DIGIT2
DIGIT3
DIGIT4
PROSE1
PROSE2
PROSE3
PROSE4

FACTOR VARIANCES (IS

Variances
T1
T2
T3
T4

.000
.000
.000
0.000

o O O

10.173
9.564
8.752
7.519

21.039

19.923

18.714

15.602
8.503
8.097
7.274
6.521

"VARIANCE"

.000
.000
.000
.000

[ =N S

o O O

0.
INDICATOR INTERCEPTS (EXPECTED OUTCOME WHEN FACTOR PREDICTOR=0)

O O OO OOO OO o oo

FOR

o O O O

.000
.000
.000
000

.302
.311
.321
.364
.511
.526
.573
.710
.187
.211
.239
.289

999.000
999.000
999.000
999.000

33.647
30.723
27.305
20.653
41.135
37.908
32.682
21.974
45.513
38.412
30.412
22.582

999.000
999.000
999.000
999.000

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
0.000

O O OO OO OO o oo

ANY VARIABLE IN THE LIKELIHOOD NOT PREDICTED)

.000
.000
.000
.000

999.000
999.000
999.000
999.000

999.000
999.000
999.000
999.000
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INDICATOR LEFTOVER VARIANCES (IS "RESIDUAL VARIANCE" FOR ANY PREDICTED VARIABLE)
Residual Variances

BLOCK1 19.334 1.707 11.329 0.000
BLOCK2 14.178 1.456 9.736 0.000
BLOCK3 12.465 1.739 7.168 0.000
BLOCK4 12.533 1.807 6.935 0.000
DIGITL1 32.716 4.583 7.138 0.000
DIGIT2 24.595 3.834 6.414 0.000
DIGIT3 24.554 4.088 6.006 0.000
DIGIT4 24.878 4.918 5.058 0.000
PROSE1 9.981 0.680 14.686 0.000
PROSE2 10.664 0.774 13.778 0.000
PROSE3 9.803 1.017 9.643 0.000
PROSE4 7.431 0.960 7.739 0.000

Given the excellent fit of this model, it appears that the indicator means, variances, and covariances are well
recreated by the four correlated factors (one for each occasion), along with residual covariances for the same
indicator over time. Next, we examine longitudinal invariance for each parameter separately: loadings (called
metric or weak), intercepts (called scalar or strong), and residual variances (called residual or strict). To
compare each layer of constraints as nested models, we will use rescaled likelihood ratio tests, which is the
—2ALL accounting for the scaling correction factors. At each layer, we will hope that global model fit is not
significantly worse from enforcing the invariance constraints, and we will also examine modification indices to
see if any specific parameters want to be noninvariant (different) over time (as local fit). For more explanation
and examples of testing invariance, please see Lecture 7 and Examples 7a—7d from my SEM class.

Model 2a. Mplus Syntax for Full Metric Invariance—Model 1 except the factor loadings for the
same indicator are now constrained equal over time, and the factor variance =1 at T1 for identification
but factor variance is free at T2-T4:

MODEL: ! DATA, VARIABLE, ANALYSIS, OUTPUT are same

From Grimm et al. (2016), adapted

111111 23, Full Metric Invariance Model !!!!1 11! . .
for three instead of four indicators:

! Define latent factors (Factor = indicator loadings)
Tl BY blockl* digitl* prosel* (BL DL PL);
T2 BY block2* digit2* prose2* (BL DL PL);
T3 BY block3* digit3* prose3* (BL DL PL);
T4 BY block4* digitd4* prosed4* (BL DL PL);

Time 1 Time 2 Time T

! Indicator intercepts
[blockl-block4*];
[digitl-digit4d*];
[prosel-prosed*];

! Indicator residual variances
blockl-block4*;
digitl-digit4d*;
prosel-prosed*;

! Same-indicator residual covariances over time
blockl-block4 WITH blockl-block4*;
digitl-digit4 WITH digitl-digit4¥*;
prosel-prose4 WITH prosel-prosed*;

! Latent factor means fixed to 0 for identification FIGURE 14.2. Path diagram of a longitudinal factor model with strict invariance
[T1R0 T2@0 T3@0 T4Q0];

! Latent factor variance=l1l at Tl for identification, free otherwise
T1@1 T2* T3* T4*;

! Latent factor covariances (all possible pairs)
Tl T2 T3 T4 WITH T1* T2* T3* T4%*;


https://www.lesahoffman.com/PSQF6249/index.html
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Model 2a. Mplus Output for Full Metric Invariance:

MODEL FIT INFORMATION

Number of Free Parameters 54 = Saved DF=6 (1l2load vs. 3load + 3FactVar)
Loglikelihood
HO Value -13141.701 = Our metric invariance model LL
HO Scaling Correction Factor 1.1194
for MLR
H1 Value -13121.771 = Saturated=best model LL
H1 Scaling Correction Factor 1.0595
for MLR Does the full metric invariance model (2a)
Information Criteria fit worse than the configural model (1)?
Akaike (AIC) 26391.403 Yes, —2ALL(df=6) = 15.09, p = .0196
Bayesian (BIC) 26633.408
Sample-Size Adjusted BIC 26461.958 In examining why the constrained model fits
(n* = (n + 2) / 24)
worse, modification indices (below) suggest
Chi-Square Test of Model Fit the loading of prose wants to be greater at T4,
Value 41.112% so we can free that loading to create a partial
Degrees of Freedom 36 metric invariance model to move forward.*
P-Value 0.2566
Scaling Correction Factor 0.9696
for MLR MODEL MODIFICATION INDICES (truncated)
M.T. E.P.C.
RMSEA (Root Mean Square Error Of Approximation) BY Statements
Estimate 0.015 T2 BY PROSE4 7.372 0.510
90 Percent C.I. 0.000 0.033 T3 BY PROSE4 7.879 0.506
Probability RMSEA <= .05 1.000 T4 BY PROSE4 7.285 0.348
CFI/TLI If we freed the factor loading at T4, the
CFI 0.999

rescaled —2ALL will improve by ~7.285, and
the T4 loading will be greater by ~0.348.

TLI 0.997

SRMR (Standardized Root Mean Square Residual)
Value 0.028

MODEL RESULTS (RELEVANT PARAMETERS ONLY)
Two-Tailed

Estimate S.E. Est./S.E. P-Value
FACTOR LOADINGS NOW EQUAL FOR SAME OUTCOME OVER TIME
T1 BY
BLOCK1 5.917 0.215 27.569 0.000 = BL
DIGIT1 10.484 0.388 27.047 0.000 = DL
PROSE1 3.455 0.121 28.641 0.000 = PL
T2 BY
BLOCK2 5.917 0.215 27.569 0.000 = BL
DIGIT2 10.484 0.388 27.047 0.000 = DL
PROSE2 3.455 0.121 28.641 0.000 = PL
T3 BY
BLOCK3 5.917 0.215 27.569 0.000 = BL
DIGIT3 10.484 0.388 27.047 0.000 = DL
PROSE3 3.455 0.121 28.641 0.000 = PL
T4 BY
BLOCK4 5.917 0.215 27.569 0.000 = BL
DIGIT4 10.484 0.388 27.047 0.000 = DL
PROSE4 3.455 0.121 28.641 0.000 = PL

FACTOR VARIANCES FREE AFTER Tl - INCREASING VARIABILITY OVER TIME
Variances

Tl 1.000 0.000 999.000 999.000
T2 1.124 0.055 20.307 0.000
T3 1.233 0.072 17.149 0.000
T4 1.522 0.108 14.053 0.000

* Note: Although one could argue that the metric model is “good enough” based on its absolute fit, I wanted to
show an example of how to trouble-shoot sources of noninvariance and create partial invariance models.
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Model 2b. Mplus Syntax for Partial Metric Invariance—Model 2a except the factor loading for
prose at T4 is now allowed to differ from its factor loadings at T1-T3:

MODEL: ! DATA, VARIABLE, ANALYSIS, OUTPUT are same

From Grimm et al. (2016), adapted

111111 2b. Patrial Metric Invariance Model !'!!!11! . L
for three instead of four indicators:

! Define latent factors (Factor = indicator loadings)
Tl BY blockl* digitl* prosel* (BL DL PL);
T2 BY block2* digit2* prose2* (BL DL PL); Time 1 Time 2 Time T

T3 BY block3* digit3* prose3* (BL DL PL); 1 v T o
T4 BY block4* digitd* prosed4* (BL DL PL4); A v °( 3\ e [ \
(Y

! Indicator intercepts e
[blockl-block4d*] ;
[digitl-digit4d*];
[prosel-proseéd*];

! Indicator residual variances
blockl-block4*;
digitl-digitd*;
prosel-proseéd*;

! Same-indicator residual covariances over time
blockl-block4 WITH blockl-block4d*;
digitl-digit4 WITH digitl-digitd*;
prosel-prose4 WITH prosel-proseéd*;

FIGURE 14.2. pPath diagram of a longitudinal factor model with strict invariance
! Latent factor means fixed to 0 for identification

[T1@QO0 T2Q0 T3@0 T4@0];

! Latent factor variance=1l at Tl for identification, free otherwise
T1@1l T2* T3* T4*;

! Latent factor covariances (all possible pairs)
Tl T2 T3 T4 WITH T1l* T2* T3* T4*;

Model 2b. Mplus Output for Partial Metric Invariance:

Numb £fF P t 55 . . .
Lum er o free rarameters Does the partial metric invariance
oglikelihood .
HO Value ~13137.301 model (2b) still fit worse than the
HO Scaling Correction Factor 1.1146 configural model (1)?
for MLR No, —2ALL(df=5) = 4.127, p = .5313
H1 Value -13121.771
H1 Scaling Correction Factor 1.0595 i .
for MLR This means that differences in the factor
Information Criteria variances over time were sufficiently
Akaike (RIC) 26384.603 responsible for the prior differences in the
Bayesian (BIC) 26631.089 factor loadings over time. In other words
Sample-Size Adjusted BIC 26456.465 fact g : ,
(n* = (n + 2) / 24) indicators are related to the latent factor
Chi-Square Test of Model Fit equivalently across time.
Value 31.925%
Degrees of Freedom 35 .
P_value 0.6173 Now we can move forward to test equality
Scaling Correction Factor 0.9729 of the indicator intercepts (scalar).
for MLR
RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.000
90 Percent C.I. 0.000 0.025
Probability RMSEA <= .05 1.000
CFI/TLI
CFI 1.000
TLI 1.000

SRMR (Standardized Root Mean Square Residual)
Value 0.017



MODEL RESULTS (RELEVANT PARAMETERS ONLY)

T1 BY
BLOCK1
DIGIT1
PROSE1

T2 BY
BLOCK?2
DIGIT2
PROSE2

T3 BY
BLOCK3
DIGIT3
PROSE3

T4 BY
BLOCK4
DIGITA4
PROSE4

Variances
T1
T2
T3
T4

Estimate

[

.987
.553
.361

.987
.553
.361

.987
.553
.361

.987
.553
.915

.000
.119
.231
.410

0.
0.
0.

(e}

[oNe)

o O O o

S.E.

214
387
126

.214
.387
.126

.214
.387
.126

.214
.387
.194

.000
.055
.071
.107

Est./S.E.
FACTOR LOADINGS NOW EQUAL FOR SAME INDICATOR OVER TIME EXCEPT PROSE4

28.
27.
26.

28.
.288
26.

27

28.
27.
26.

28.
.288
20.

27

999.
20.
17.
13.

027
288
618

027
618
027
288
618
027
158
000
486

345
228
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Two-Tailed
P-Value

0.
0.
0.

(e}

000
000
000

.000
.000
.000

.000
.000
.000

.000
.000
.000

.000
.000
.000
.000

= PL4 at T4 > T1,T2,T3

Model 3a. Mplus Syntax for Full'Scalar Invariance —Model 2b except the intercepts for the same
indicator are constrained equal (including prose4, given how few indicators there are per factor), and

the factor mean = 0 at T1 for identification but factor mean is free at T2—T4:

MODEL: ! DATA,

trrrrt 3a. Full
! Define latent
Tl BY blockl*
T2 BY block2*
T3 BY block3*
T4 BY block4*

VARIABLE, ANALYSIS, OUTPUT are same

Scalar Invariance Model
= indicator loadings)
(BL DL PL) ;
(BL DL PL) ;
(BL DL PL) ;
(BL DL PL4) ;

factors
digitl*
digit2*
digit3*
digitd*

! Indicator intercepts
[blockl-block4*]
[digitl-digit4d*]
[prosel-prosed*]

! Indicator residual variances

blockl-block4*;
digitl-digit4d*;
prosel-prosed*;

! Same-indicator residual covariances over time

(Factor
prosel¥*
prose2¥*
prose3*
proseé4x*

blockl-block4 WITH blockl-block4*;
digitl-digit4 WITH digitl-digitd¥*;
prosel-prose4 WITH prosel-proseéd*;

! Latent factor mean=0 at Tl for identification,

[T1@0 F2XTTSHITAR) ;

! Latent factor variance=1l at Tl for identification,

T1@1 T2* T3*

T4%*;

! Latent factor covariances (all possible pairs)
Tl T2 T3 T4 WITH T1l* T2* T3* T4*;

Time 1

{\

BL DL PL:

From Grimm et al. (2016), adapted
for three instead of four indicators:

Wy
* *
V22 rr
/////;T/’;F;T\_‘Hg‘;:\\\\\\( \

Time 2 Time T

FIGURE 14.2. Path diagram ol a longitudinal factor model with strict invariance

free otherwise

free otherwise
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Model 3a. Mplus Output for Full Scalar Invariance:

Number of Free Parameters 49 = Saved DF=6 (12int vs. 3int + 3FactMean)
Loglikelihood
HO Value -13140.311 .
HO Scaling Correction Factor 11311 Does the full _scalar m_odel (3a) fit worse
for MLR than the partial metric model (2a)?
H1 Value -13121.771 No, —2ALL(df=6) = 6.144, p = .4073
H1 Scaling Correction Factor 1.0595
for MLR

Information Criteria This means that differences in the factor

Akaike (AIC) 26378.621 means over time were sufficiently
Bayesian (BIC) 26598.219 responsible for the differences in the
Sample-Size Adjusted BIC 26442.644 indicator means (now intercepts) over time.
(n* = (n + 2) / 24)
Chi-Square Test of Model Fit
Value 38.075% Now we can move forward to test equality
Degrees of Freedom 41 of the indicator residual variances.
P-Value 0.6014
Scaling Correction Factor 0.9739
for MLR
RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.000
90 Percent C.TI. 0.000 0.024
Probability RMSEA <= .05 1.000
CFI/TLI
CFI 1.000
TLI 1.000
SRMR (Standardized Root Mean Square Residual)
Value 0.020

MODEL RESULTS (RELEVANT PARAMETERS ONLY)
Two-Tailed

Estimate S.E. Est./S.E. P-Value
FACTOR MEANS NOW SHOW DECLINE OVER TIME
Means
T1 0.000 0.000 999.000 999.000
T2 -0.110 0.027 -4.030 0.000
T3 -0.255 0.037 -6.936 0.000
T4 -0.479 0.049 -9.741 0.000

INDICATOR INTERCEPTS NOW EQUAL FOR SAME OUTCOME OVER TIME

Intercepts
BLOCK1 10.232 0.285 35.949 0.000 = BI
BLOCK?2 10.232 0.285 35.949 0.000
BLOCK3 10.232 0.285 35.949 0.000
BLOCK4 10.232 0.285 35.949 0.000
DIGIT1 21.067 0.480 43.919 0.000 = DI
DIGIT2 21.067 0.480 43.919 0.000
DIGIT3 21.067 0.480 43.919 0.000
DIGIT4 21.067 0.480 43.919 0.000
PROSE1 8.422 0.176 47.835 0.000 = PI
PROSE2 8.422 0.176 47.835 0.000
PROSE3 8.422 0.176 47.835 0.000
PROSE4 8.422 0.176 47.835 0.000
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Model 4a. Mplus Syntax for Full Residual Variance Invariance—Model 3a except the residual
variances for the same indicator are constrained equal over time (including prose4 to start with):

MODEL: ! DATA, VARIABLE, ANALYSIS, OUTPUT are same

111111 4a. Full Residual Variance Invariance Model !!!!!!
! Define latent factors (Factor = indicator loadings)

From Grimm et al. (2016), adapted
for three instead of four indicators:

Tl BY blockl* digitl* prosel* (BL DL PL);
T2 BY block2* digit2* prose2* (BL DL PL); Time 1 Time 2

Time T

T3 BY block3* digit3* prose3* (BL DL PL); 1 Y =) *
T4 BY block4* digitd4* prose4* (BL DL PL4); (////,//”';;\\_k—“*\\\\\\\<¥“\
War Wre
/e

! Indicator intercepts @
[blockl-block4*]
[digitl-digit4d*]

[prosel-prosed*]
BL DL PL BL DL PL BL DL PL4
! Indicator residual variances
blockl-blockd* (SRS Yo || Yar || Y Vi || Va2 || Ysz &\ Vir (Yo || Var
ok okt B 2] |
prosel-prosed* (ER); “BRDRPR“{ "BRDRPR" “BR DR PR
! Same-indicator residual covariances over time o = ‘ w i w
blockl-block4 WITH blockl-block4d*;
digitl-digit4 WITH digitl-digitd*;
prosel-prose4 WITH prosel-proseéd*; 1
FIGURE 14.2. Path diagram of a longitudinal factor model with strict invariance
! Latent factor mean=0 at Tl for identification, free otherwise
[T1e0 E2¥NTS*ITAX] ;
! Latent factor variance=1l at Tl for identification, free otherwise
T1Q@1 T2* T3* T4*;
! Latent factor covariances (all possible pairs)
Tl T2 T3 T4 WITH T1* T2* T3* T4*;
Model 4a. Mplus Output for Full Residual VVariance Invariance:
Number of Free Parameters 40 > Saved DF=9 (l2resvar vs. 3resvar)
Loglikelihood
HO Value -13157.694
HO Scaling Correction Factor L.1780 Does the full residual variance model (4a)
for MLR .
41 Value _13121.771 fit worse than the full scalar model (3a)?
H1 Scaling Correction Factor 1.0595 Yes, —2ALL(df=9) = 37.680, p < .0001
for MLR
Information Criteria MODEL MODIFICATION INDICES (truncated)
Akaike (AIC) 26395.388 M.T. E.P.C.
Bayesian (BIC) 26574.651 Variances/Residual Variances
Sample—Size Adjusted BIC 26447.651 BLOCK1 21.897 4.079
(n* = (n + 2) / 24) DIGIT1 10.763 7.267
Chi-Square Test of Model Fit
‘éalue c rred 74. 4;;* If we freed the block residual variance at T1,
egrees o reedom _ A
P—Value 0.0140 the rescaled —2ALL WI|| improve by_
Scaling Correction Factor 0.9647 ~21.897, and the residual variance will be
for MLR greater by ~4.079. To save a step, | will free
RMSEA (Root Mean Square Error Of Approximation) both of these residual variances at once.
Estimate 0.027
90 Percent C.TI. 0.013 0.040
Probability RMSEA <= .05 0.999
CFI/TLI
CFI 0.993
TLI 0.991

SRMR (Standardized Root Mean Square Residual)
Value 0.032



MODEL RESULTS (RELEVANT PARAMETERS ONLY)
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Two-Tailed

Estimate S.E. Est./S.E. P-Value
RESIDUAL VARIANCES = AMOUNT OF "NOT THE FACTOR" VARIANCE EQUAL OVER TIME

BLOCK1 15.848 1.193 13.282 0.000 = BR
BLOCK?2 15.848 1.193 13.282 0.000
BLOCK3 15.848 1.193 13.282 0.000
BLOCK4 15.848 1.193 13.282 0.000
DIGIT1 26.480 3.211 8.246 0.000 = DR
DIGIT2 26.480 3.211 8.246 0.000
DIGIT3 26.480 3.211 8.246 0.000
DIGIT4 26.480 3.211 8.246 0.000
PROSE1 10.032 0.538 18.661 0.000 = PR
PROSE2 10.032 0.538 18.661 0.000
PROSE3 10.032 0.538 18.661 0.000
PROSE4 10.032 0.538 18.661 0.000

Model 4b. Mplus Syntax for Partial Residual VVariance Invariance—Model 4a except the residual
variances for block and digit at T1 can differ from those at T2-T4:

MODEL: ! DATA, VARIABLE, ANALYSIS, OUTPUT are same

4b. Partial Residual Variance Invariance Model

! Define latent factors (Factor = indicator loadings)
Tl BY blockl* digitl* prosel* (BL DL PL);
T2 BY block2* digit2* prose2* (BL DL PL); .
T3 BY block3* digit3* prose3* (BL DL PL); Time 1
T4 BY block4* digitd* prosed* (BL DL PL4); 1

! Indicator intercepts
[blockl-block4*]
[digitl-digitéd*]
[prosel-prosed*]

BL DL PL

! Indicator residual variances

From Grimm et al. (2016), adapted
for three instead of four outcomes:

Time T

BL DL PL4

blockl* [(BR1); block2-block4d*
digitl* (DR1); digit2-digitd*

(BR) ;
(DR) ;

prosel-prose4* (PR) ;

! Same-outcome residual covariances over time . 5 1

blockl-block4 WITH blockl-block4*;
digitl-digit4 WITH digitl-digitd¥*;
prosel-prose4 WITH prosel-prosedx*;

! Latent factor mean=0 at Tl for
! identification, free otherwise

[T1e0 E2XTTSEITAX) ;

! Latent factor variance=1l at Tl for identification,

T1@1 T2* T3* T4*;

BR1 DR1 PR¢

e

"BRDRPR"

4 T

FIGURE 14.2. Path diagram of a longitudinal factor model with strict invariance

free otherwise

! Latent factor covariances (all possible pairs)

Tl T2 T3 T4 WITH T1l* T2* T3* T4*;

Model 4b. Mplus Output for Partial Residual VVariance Invariance:

Number of Free Parameters
Loglikelihood
HO Value
HO Scaling Correction Factor
for MLR
H1 Value
H1l Scaling Correction Factor
for MLR
Information Criteria
Akaike (AIC)
Bayesian (BIC)
Sample-Size Adjusted BIC
(n* = (n + 2) / 24)

42 > Saved DF=7 (l2resvar vs. 3+2resvar)

-13144.753
1.1650

-13121.771
1.0595

26373.506
26561.732
26428.382



Chi-Square Test of Model Fit
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Does the partial residual variance model
(4b) still fit worse than the full scalar
model (3a)?

No, —2ALL(df=7) = 9.576, p = .2139

This will be our new baseline moving
forward with respect to the structural model,
which is saturated here (all possible means,
variances, and covariances are estimated
except where constrained for identification).

But we will need to change the method of
identification for our change model so that
all the lower-order factor variances can be
estimated instead...

Two-Tailed
P-vValue

BL 2> TO BE USED NEXT
DL
PL

0.
0.
0.

000
000
000

.000
.000
.000

BL
DL
PL

o

.000
.000
.000

BL
DL
PL
0.000
0.000 DL
0.000 PL4
CORRELATIONS HERE)

BL

0.
0.
0.

000
000
000

.000
.000

0.
FREELY

000
ESTIMATED)

.000
.000
.000

o

.000
.001

.000
.008
.035
.036

.034
.024

Value 47.525%*
Degrees of Freedom 48
P-Value 0.4922
Scaling Correction Factor 0.9672
for MLR
RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.000
90 Percent C.I. 0.000 0.025
Probability RMSEA <= .05 1.000
CFI/TLI
CFI 1.000
TLI 1.000
Chi-Square Test of Model Fit for the Baseline Model
Value 3516.779
Degrees of Freedom 66
P-Value 0.0000
SRMR (Standardized Root Mean Square Residual)
Value 0.025
MODEL RESULTS
Estimate S.E. Est./S.E.
FACTOR LOADINGS EQUAL FOR SAME OUTCOME OVER TIME EXCEPT PROSE4
T1 BY
BLOCK1 5.972 0.215 27.823
DIGIT1 10.579 0.385 27.475
PROSE1 3.371 0.125 26.973
T2 BY
BLOCK2 5.972 0.215 27.823
DIGIT2 10.579 0.385 27.475
PROSE2 3.371 0.125 26.973
T3 BY
BLOCK3 5.972 0.215 27.823
DIGIT3 10.579 0.385 27.475
PROSE3 3.371 0.125 26.973
T4 BY
BLOCK4 5.972 0.215 27.823
DIGIT4 10.579 0.385 27.475
PROSE4 3.911 0.195 20.103
FACTOR COVARIANCES ALLOWED TO DIFFER OVER TIME (NOT
T1 WITH
T2 1.009 0.028 36.545
T3 0.966 0.042 23.020
T4 0.983 0.052 19.024
T2 WITH
T3 1.109 0.059 18.727
T4 1.150 0.067 17.099
T3 WITH
T4 1.263 0.077 16.482
RESIDUAL COVARIANCES FOR SAME INDICATOR OVER TIME (
BLOCK1 WITH
BLOCK2 7.453 1.193 6.247
BLOCK3 8.263 1.248 6.620
BLOCK4 6.584 1.448 4.548
BLOCK2 WITH
BLOCK3 7.159 1.198 5.978
BLOCK4 4.482 1.319 3.398
BLOCK3 WITH
BLOCK4 6.331 1.359 4.658
DIGIT1 WITH
DIGIT2 8.909 3.339 2.668
DIGIT3 7.459 3.531 2.113
DIGIT4 7.823 3.728 2.099
DIGIT2 WITH
DIGIT3 7.398 3.483 2.124
DIGIT4 7.779 3.446 2.257
DIGIT3 WITH
DIGIT4 2.729 3.671 0.743

.457
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PROSE1 WITH

PROSE2 4.916 0.619 7.944 0.000
PROSE3 4.368 0.681 6.418 0.000
PROSE4 4.717 0.848 5.560 0.000
PROSE2 WITH
PROSE3 5.261 0.622 8.461 0.000
PROSE4 5.325 0.853 6.240 0.000
PROSE3 WITH
PROSE4 6.301 0.680 9.261 0.000
FACTOR MEANS SHOW INCREASING DECLINE OVER TIME
Means
T1 0.000 0.000 999.000 999.000

INTERCEPTS FOR SAME INDICATOR HELD EQUAL OVER TIME (SO CHANGE IS DUE TO FACTORS ONLY!)

Intercepts
BLOCK1 10.238 0.284 35.996 0.000 ENBT
BLOCK2 10.238 0.284 35.996 0.000
BLOCK3 10.238 0.284 35.996 0.000
BLOCK4 10.238 0.284 35.996 0.000
DIGIT1 21.086 0.481 43.876 0.000 ENDT
DIGIT2 21.086 0.481 43.876 0.000
DIGIT3 21.086 0.481 43.876 0.000
DIGIT4 21.086 0.481 43.876 0.000
PROSE1 8.423 0.176 47.934 0.000 ENPT
PROSE?2 8.423 0.176 47.934 0.000
PROSE3 8.423 0.176 47.934 0.000
PROSE4 8.423 0.176 47.934 0.000
FACTOR VARIANCES SHOW INCREASING VARIABILITY OVER TIME
Variances
T1 1.000 0.000 999.000 999.000
T2 1.126 0.054 20.887 0.000
T3 1.231 0.070 17.630 0.000
T4 1.415 0.105 13.534 0.000
RESIDUAL VARIANCES = AMOUNT OF "NOT THE FACTOR" VARIANCE EQUAL EXCEPT BLOCK1 AND DIGIT1
BLOCK1 19.552 1.624 12.041 0.000 BRI
BLOCK2 13.573 1.220 11.127 0.000 = BR
BLOCK3 13.573 1.220 11.127 0.000 = BR
BLOCK4 13.573 1.220 11.127 0.000 = BR
DIGIT1 32.968 4.390 7.510 0.000 = DRI
DIGIT2 23.577 3.147 7.492 0.000 = DR
DIGIT3 23.577 3.147 7.492 0.000 = DR
DIGIT4 23.577 3.147 7.492 0.000 = DR
PROSE1 9.918 0.542 18.283 0.000 = PR
PROSE?2 9.918 0.542 18.283 0.000 = PR
PROSE3 9.918 0.542 18.283 0.000 = PR
PROSE4 9.918 0.542 18.283 0.000 = PR

Model 5a. Mplus Syntax for Latent Basis Change Model—also known as a “Curve of Factors”
Model—Kkeeping non-invariant parameters from prior measurement models, but using a “marker item”
identification method for the factor variances so they can become “leftover”:

MODEL: ! DATA, VARIABLE, ANALYSIS, OUTPUT are same . . .
Because our time-specific factor variances

111111 5a. Latent Basis Change Model !!!1!11 need to be free to become leftover

! Define latent factors (Factor = indicator loadings) (:‘ﬁiﬁurbances”)\Neneedtochangeour

! Factor loadings held equal over time except prose4

T1 BY blockl1@5.972; T1 BY digitl* prosel* (DL PL); model identification to use a “marker

T2 BY block2@5.972; T2 BY digit2* prose2* (DL PL); it@m” whose factror loading is ﬁxed_(a_md
T3 BY block3@5.972; T3 BY digit3* prose3* (DL PL); still equal over time). Rather than fixing
T4 BY block4@5.972; T4 BY digitd4* prosed* (DL PL4); that loading to 1, we are fixing it to the

! Indicator intercepts all held equal over time value cor_respondlgg to the pl_’eVIOLiS T
[blockl-block4*] factor (with mean=0 and variance=1), that

[digitl-digitd*] way the total SD ~= 1 for the T1 factor.
[prosel-prosed*]




Indicator residual variances held equal over time
except blockl and digitl

blockl* (BR1l); block2-block4* (BR) ;

digitl* (DR1l); digit2-digit4* [(DR) ;
prosel-prosed* (PR) ;

! Same-indicator residual covariances over time
blockl-block4 WITH blockl-block4d*;

digitl-digit4 WITH digitl-digitd*;

prosel-prose4 WITH prosel-prosed*;
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Latent factor mean=0 at all occasions so that all mean change

is captured by the intercept and slope factors'
[T1RO T2@0 T3QO0 T4@O0];

fixed effects

Latent factor variance held equal over time (like diagonal R matrix)
so all heterogeneity of variance is captured by slope factor variance

T1l* T2* T3* T4* (ResVar);

Latent factor covariances (all possible pairs) SHUT OFF @0 so that
all covariance over time is captured by intercept and slope factor variances

Tl T2 T3 T4 WITH T1@0 T2@0 T3@0 T4@Q0;

Define new higher-order intercept and latent basis change factors

Int BY T1Q@1 T2Q@1 T3Q@1l T4@1;

Slp BY T1@0 T2* T3* T4Q1;

Higher-order factor means = fixed effects

[IntRO Slp*]; ! Fixed int = 0 for identification
Higher-order factor variances = random effect variances
Int* Slp*;

Higher-order factor covariance =
Int WITH Slp*;

random effects covariance

Note: the loading for T4
could have been fixed to 3
instead to maintain a typical
metric of change per unit
time (per two years here).

> /V

N

0 1
é: 1 S2 K2
0 i
From Grimm et al. (2016), adapted
J N T~ 7 . 1 to make a latent basis slope factor:
v v / v
11 21 7131 41
/;._" Ad }\-_ A /{" ;‘.? A A
Yir || Y || Vsl Yo || Va2 ||V32 Vi3 (| Va3 || V33 Vg || Voa || V34
A A A i A A i A A A A )
ﬁfij 922\j 93} (hrAk? 02:\ 033} 9?1\} Oz 933f (h?tj‘ oz j 03;}
Ty T %] Ty T L% Ty (3] T3 Ty T2 L]

FIGURE 14.3. Path diagram of a second-order growth model.
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Model 5a. Mplus Output for Latent Basis Change Model (i.e., “Curve of Factors” Model):

Number of Free Parameters

36 = Saved DF=6

Loglikelihood
HO Value -13151.623 Saved DF=6... how?
HO Scaling Correction Factor 1.1915 3 factor means = 1 fixed change slope
for MLR . .
H1 Value _13121.771 3 factqr variances and 6 covariances >
H1 Scaling Correction Factor 1.0595 2 loadings, 1 intercept factor variance, 1
for MLR slope factor variance, and 1 covariance
Information Criteria
Akaike (AIC) 26375.247 :
Bayesian (BIC) 26536.583 Does the latent basis change model
Sample-Size Adjusted BIC 26422.284 (5a) fit worse than the partial residual
chios T(n; .o : i)F(tZ‘“ variance model (4b)?
l—-odquare es o ode 1 _ - - -
Value 61.458% Yes, —2ALL(df=6) = 13.658, p = .0337
Degrees of Freedom 54
P-vValue 0.2265 MODEL MODIFICATION INDICES (truncated)
Scaling Correction Factor 0.9715 M.I. E.P.C.
for MLR Means/Intercepts/Thresholds
RMSEA (Root Mean Square Error Of Approximation) [T4] 10.295 ~0.194
Estimate 0.015 )
90 percent C.I. 0.000 0.030 If we freed the factor intercept at T4, the
Probability RMSEA <= .05 1.000 rescaled —2ALL would improve by 10.295,
CF1/TLI and the factor intercept should be lower by
gi 8223 0.194. (And no, moving the fixed loading of
SRMR (Standardized Root Mean Square Residual) lforthEChangefmjoru)TzinﬂeadOfT4
value 0.028 doesn’t solve the problem...)
MODEL RESULTS - NEW PARAMETERS ONLY:
Two-Tailed
Estimate S.E. Est./S.E. P-Value
NEW HIGHER-ORDER FACTOR LOADINGS
INT BY
T1 1.000 0.000 999.000 999.000
T2 1.000 0.000 999.000 999.000
T3 1.000 0.000 999.000 999.000
T4 1.000 0.000 999.000 999.000
SLP BY
T1 0.000 0.000 999.000 999.000
T2 0.270 0.045 6.057 0.000 2 27.0% of change by T2
T3 0.629 0.074 8.439 0.000 > 62.6% of change by T3
T4 1.000 0.000 999.000 999.000

HIGHER-ORDER FACTOR COVARIANCE =
INT WITH
SLP

0.025 0.056

HIGHER-ORDER FACTOR MEANS =

Means
INT 0.000 0.000
SLP -0.466 0.047

FACTOR VARIANCES =
Variances

INT

SLP

0.993
0.372

0.069
0.083

Residual Variances =

Tl 0.044 0.011
T2 0.044 0.011
T3 0.044 0.011
T4 0.044 0.011

RESIDUAL VARIANCE OF LOWER-ORDER FACTORS

RANDOM EFECT COVARIANCE (IN G MATRIX)

0.441 0.659

FIXED INTERCEPT=0 FOR IDENTIFICATION, FIXED SLOPE

999.000
-9.890

999.000

RANDOM EFFECTS VARIANCES (IN G MATRIX)

14.304
4.494

0.000
0.000

(IN R MATRIX DIAGONAL)

4.110 0.000
4.110 0.000
4.110 0.000
4.110 0.000

0.000 = Total mean decline over time
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Model 5b. Mplus Syntax for [REViSeohatentiBasisiChangeiviotel—Model 5a, except freeing the

factor intercept at T4:

MODEL: ! DATA, VARIABLE, ANALYSIS, OUTPUT are same

111111 5b. Revised Latent Basis Change Model !!!!!!

! Define latent factors (Factor = indicator loadings)

! Factor loadings held equal over time except prose4
Tl BY blockl@5.972; Tl BY digitl* prosel* (DL PL);
T2 BY block2@5.972; T2 BY digit2* prose2* (DL PL);
T3 BY block3@5.972; T3 BY digit3* prose3* (DL PL);
T4 BY block4@5.972; T4 BY digitd4* prosed4* (DL PL4);

! Indicator intercepts all held equal over time
[blockl-block4*]
[digitl-digit4d*]
[prosel-prosed*]

! Indicator residual variances held equal over time
! except blockl and digitl
blockl* (BR1l); block2-block4* (BR) ;
digitl* [(DR1); digit2-digit4* (DR) ;
prosel-proseé4* (PR) ;

! Same-indicator residual covariances over time
blockl-block4 WITH blockl-block4d*;
digitl-digit4 WITH digitl-digitd*;
prosel-prose4 WITH prosel-proseéd*;

! Latent factor mean=0 at all occasions so that all mean change

! is captured by the intercept and slope factors' fixed effects
[T1@0 T2@0 T3@0 @] ; ' T4 int now free

! Latent factor variance held equal over time (like diagonal R matrix)

! so all heterogeneity of variance is captured by slope factor variance
Tl* T2* T3* T4* (ResVar);

! Latent factor covariances (all possible pairs) SHUT OFF @0 so that

! all covariance over time is captured by intercept and slope factor variances
Tl T2 T3 T4 WITH T1@0 T2@0 T3QO0 T4@0;

! Define new higher-order intercept and latent basis change factors
Int BY T1@1 T2Q@1 T3Q@1l T4@1;
Slp BY T1Q0 T2* T3* T4Q1;

! Higher-order factor means = fixed effects
[IntRO Slp*]; ! Fixed int = 0 for identification

! Higher-order factor variances = random effect variances
Int* Slp*;

! Higher-order factor covariance = random effects covariance
Int WITH Slp*;

Model 5b. Mplus Output for REVISEOINGIENUSASISICHANGEINIOEE!

Number of Free Parameters 37 = Saved DF=5 now
Loglikelihood
HO Value -13146.993 Saved DF=5... how?
HO Scaling Correction Factor 1.1808 .
S 3 factor means -> 1 fixed change slope il
Hl Value -13121.771 3 factor variances and 6 covariances =
Hlfscabldigg Correction Factor 1.0595 2 loadings, 1 intercept factor variance, 1 slope
or . .
Information Criteria factor variance, and 1 covariance
Akaike (AIC) 26367.987
Bayesian (BIC) 26533.805 i i
Sample-Size Adjusted BIC 26416.330 Does the revised latent basis change model
(n* = (n + 2) / 24) (5b) fit worse than the partial residual
Chi-Square Test of Model Fit H b
Vatee Sl a9 variance model (4?). )
Degrees of Freedom 53 NO, _2ALL(df=5) - 4274, p= .2106

P-Value 0.5230



Scaling Correction Factor

for MLR

0.9748

RMSEA (Root Mean Square Error Of Approximation)

Estimate
90 Percent C.I.
Probability RMSEA <=

CFI/TLI
CFI
TLI

0.
0.

1

SRMR (Standardized Root Mean Square Residual)

Value

FULL MODEL RESULTS

Estimate

.E.

0.

000
000
.000

.000
.000

027

Est./S.E.

0.024

Two-Tailed
P-Value

FACTOR LOADINGS EQUAL FOR SAME OUTCOME OVER TIME EXCEPT PROSE4

T1 BY
BLOCK1
DIGIT1
PROSE1

T2 BY
BLOCK2
DIGIT2
PROSE2

T3 BY
BLOCK3
DIGIT3
PROSE3

T4 BY
BLOCK4
DIGIT4
PROSE4

INT BY
T1
T2
T3
T4
SLP BY
T1
T2
T3
T4

N

o O O

.972
.574
.362

.972
.574
.362

.972
.574
.362

.972
.574
.921
NEW HIGHER-ORDER FACTOR LOADINGS

.000
.000
.000
.000

.000
.329
.752

1.000

DISTURBANCES COVARIANCES

T1 WITH
T2
T3
T4

T2 WITH
T3
T4

T3 WITH
T4

INT WITH
SLP

BLOCK1
BLOCK2
BLOCK3
BLOCK4

BLOCK2
BLOCK3
BLOCK4

BLOCK3
BLOCK4

DIGIT1
DIGIT2
DIGIT3
DIGIT4

DIGIT2
DIGIT3
DIGIT4

WITH

WITH

WITH

WITH

WITH

o

0.
HIGHER-ORDER FACTOR COVARIANCE

0.
RESIDUAL COVARIANCES FOR

[ee)

o

o o

o O O o

o O O

.000
.347
.128

.000
.347
.128

.000
.347
.128

.000
.347
177

.000
.000
.000
.000

.000
.057
.084
0.

000

999

30.
26.

999.

30
26

999.

30
26

999.

30

22.

999.
999.
999.
999.

999.

5
8
999

.000
459
327

000
.459
.327

000
.459
.327

000
.459
130

000
000
000
000

000
.792
L9717
.000

999.000
0.000
0.000

999.000
0.000
0.000

999.000
0.000
0.000

999.000
0.000
0.000

999.000
999.000
999.000
999.000

999.000
0.000
0.000

999.000
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= PL4

> 32.9% of change by T2
> 75.2% of change by T3

FOR FACTORS SHUT OFF (LIKE NO RESIDUAL COVARIANCE IN R)

.000
.000
.000

.000
.000

000

009

.535
.122
.569

.210
.510

.207
.229
.952
.552

.658
.915

o

0.

0.
SAME INDICATOR OVER TIME (FREELY

1.
.251
.455

1
1

.000
.000
.000

.000
.000

000

052

199

.176
.304

.367
.285
.520
.622

.452
.410

999.
999.
999.

999.
999.

999.
RANDOM EFFECTS COVARIANCE (IN G MATRIX)

0

6.
6.

4

000
000
000

000
000

000

.182

282
490
.516

.130
.458

.539
.809
.975
.085

.218
.321

999.000
999.000
999.000

999.000
999.000

999.000

0.856

0.000
.000
0.000

o

0.000
0.001

0.000
0.005
0.048
0.037

0.027
0.020

ESTIMATED)
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- Total mean decline over time

(SO CHANGE IS DUE TO FACTORS ONLY!)

000 = NEW MEAN DEVIATION FOR T4

VARIANCES AND RESIDUAL VARIANCE (IN R MATRIX DIAGONAL)

BR1

DR1

Comparing model-predicted factor
means and variances as given by
TECHA4 output (at the very end):

—4c Residual Invariance Model
5a Latent Basis Model
Sb Latent Basis Model + T4int

—

e

DIGIT3 WITH
DIGIT4 2.184 3.642 0.600 0.549
PROSE1 WITH
PROSE2 4.942 0.618 8.001 0.000
PROSE3 4.335 0.677 6.403 0.000
PROSE4 4.732 0.846 5.596 0.000
PROSE2 WITH
PROSE3 5.273 0.618 8.537 0.000
PROSE4 5.327 0.849 6.275 0.000
PROSE3 WITH
PROSE4 6.274 0.673 9.317 0.000
HIGHER-ORDER FACTOR MEANS = FIXED INTERCEPT=0 FOR IDENTIFICATION, FIXED SLOPE
Means
INT 0.000 0.000 999.000 999.000
SLP -0.340 0.050 -6.752 0.000
INTERCEPTS FOR SAME INDICATOR HELD EQUAL OVER TIME
Intercepts
BLOCK1 10.245 0.282 36.364 0.000
BLOCK2 10.245 0.282 36.364 0.000
BLOCK3 10.245 0.282 36.364 0.000
BLOCK4 10.245 0.282 36.364 0.000
DIGIT1 21.095 0.479 44.045 0.000
DIGIT2 21.095 0.479 44.045 0.000
DIGIT3 21.095 0.479 44.045 0.000
DIGIT4 21.095 0.479 44.045 0.000
PROSE1 8.423 0.175 48.083 0.000
PROSE2 8.423 0.175 48.083 0.000
PROSE3 8.423 0.175 48.083 0.000
PROSEA4 8.423 0.175 48.083 0.000
T1 0.000 0.000 999.000 999.000
T2 0.000 0.000 999.000 999.000
T3 0.000 0.000 999.000 999.000
T4 0.040 -3.638 0.
FACTOR VARIANCES = RANDOM EFFECT VARIANCES (IN G MATRIX)
Variances
INT 0.994 0.070 14.106 0.000
SLP 0.366 0.076 4.837 0.000
INDICATOR "NOT THE FACTOR" LEFTOVER
Residual Variances
BLOCK1 19.393 1.615 12.005 0.000
BLOCK2 13.651 1.211 11.271 0.000
BLOCK3 13.651 1.211 11.271 0.000
BLOCK4 13.651 1.211 11.271 0.000
DIGIT1 32.163 4.317 7.450 0.000
DIGIT2 23.748 3.110 7.637 0.000
DIGIT3 23.748 3.110 7.637 0.000
DIGIT4 23.748 3.110 7.637 0.000
PROSE1 9.920 0.541 18.334 0.000
PROSE2 9.920 0.541 18.334 0.000
PROSE3 9.920 0.541 18.334 0.000
PROSE4 9.920 0.541 18.334 0.000
T1 0.040 0.010 3.915 0.000
T2 0.040 0.010 3.915 0.000
T3 0.040 0.010 3.915 0.000
T4 0.040 0.010 3.915 0.000
=—4c Residual Invariance Model
5a Latent Basis Model
5b Latent Basis Model + T4int
0.1 17
é 0.1 g 1.5
= & 13
— @
g 03 ; 1.1
& S 09
-0.5 - &
0.7
-0.7 0.5
T1 T2 T3 T4

T1 T2 T3 T4
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How were these lower-order latent variable means and variances predicted by the latent basis
(“curve of factors”) model? (See excel for computations)

Mean = IntMean + SlopeMean(FactorLoading = Time) + DeviationInterept
MeanT1 = 0.000 — 0.340(0.000) — 0.000 = 0.000
MeanT2 = 0.000 — 0.340(0.329) — 0.000 = —0.112
MeanT3 = 0.000 — 0.340(0.752) — 0.000 = —0.256
MeanT4 = 0.000 — 0.340(1.000) — 0.145 = —0.485

Variance = IntVar + SlopeVar(FactorLoading? = Time?) + Covar(2 x Time) + ResVar
VarT1 = 0.994 + 0.366(0.000%) + 0.009(2 * 0.000) + 0.040 = 1.034
VarT2 = 0.994 + 0.366(0.3292) + 0.009(2 * 0.329) + 0.040 = 1.080
VarT3 = 0.994 + 0.366(0.7522) + 0.009(2 * 0.752) + 0.040 = 1.255
VarT4 = 0.994 + 0.366(1.000%) + 0.009(2 * 1.000) + 0.040 = 1.418

Sample results section for these longitudinal invariance and “curve of factor” models:

The extent of individual differences in change over time (four occasions collected at two-year intervals) in a latent factor of
cognition (with three observed indicators: block design, digit-symbol substitution, and prose recall) was examined using
Mplus v. 8.11 (Muthén & Muthén, 1998-2017). Robust maximum likelihood (MLR) estimation was used for all analyses;
nested model comparisons were conducted using the rescaled difference in the model —2LL values with degrees of freedom
equal to the difference in the number of model parameters. Prior to examining change in the latent factor over time, partial
longitudinal measurement invariance was established by a series of nested models, as described next.

[Table 1 would have the fit of each model, as shown in the excel workbook for this example. Depending on the journal, you
may need to add text defining each fit index and what is considered “good fit” for each. You could also make a Table 2 for
all the LRTs instead of giving them in the text as I did below.]

Table 1 Model Fit

Al Al

#Free Chi-Square Chi-Square Chi-Square Chi-Square RMSEA RMSEA RMSEA RMSEA

Model Parms  Value Scale Factor DF p-value Estimate Lower Cl Higher Cl p-value

1. Configural Model 60 27.704 1.0039 30 0.5861 1.000 0.000 0.000 0.027 1.000
2a. Full Metric Invariance 54 41.112 0.9696 36 0.2566 0.999 0.015 0.000 0.033 1.000
2b. Partial Metric (- PL4) 55 31.925 0.9729 35 0.6173 1.000 0.000 0.000 0.025 1.000
3a. Full Scalar Invariance 49 38.075 0.9739 41 0.6014 1.000 0.000 0.000 0.024 1.000
4a. Full Residual Variance 40 74.477 0.9647 50 0.0140 0.993 0.027 0.013 0.040 0.999
4b. Partial Residual Variance (- BR1, -DR1) 42 47.525 0.9672 48 0.4922 1.000 0.000 0.000 0.025 1.000
Sa. Latent Basis 36 61.458 0.9715 54 0.2265 0.998 0.015 0.000 0.030 1.000
5b. Revised Latent Basis 37 51.749 0.9748 53 0.5230 1.000 0.000 0.000 0.024 1.000

First, a configural invariance model was specified in which four correlated factors (i.e., one factor for each occasion) were
estimated simultaneously; all factor means were fixed to 0 and all factor variances were fixed to 1 for identification.
Residual covariances for the same indicator across the four occasions were also estimated. As shown in Table 1, the
configural invariance model had excellent fit by every index, indicating that the 12 indicator means, variances, and
covariances were recreated well by the model.

Equality of the unstandardized factor loadings across occasions was then examined in a metric invariance model. The factor
variance was fixed to 1 at occasion 1 for identification but was freely estimated at occasions 2, 3, and 4. The factor means
were all fixed to 0 for identification. All factor loadings were constrained equal across occasions, but all indicator intercepts
and residual variances varied over time. Factor covariances and same-occasion indicator residual covariances were
estimated as described previously. Although the metric invariance model had excellent global fit, it fit significantly worse
than the configural invariance model, —2ALL(6) = 15.09, p = .020. Modification indices suggested that the loading of prose
recall at occasion 4 was a significant source of local misfit and should be freed. After doing so, the partial metric invariance
model had excellent fit (as shown in Table 1) that was not significantly worse than the configural invariance model,
—2ALL(5) = 4.13, p = .531. The fact that partial metric invariance (i.e., “weak invariance”) held indicates that the same
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latent factor was being measured at each occasion, or that the indicators were related to their latent factor equivalently over
time (except for prose recall, which was slightly more related to its factor at occasion 4 than at occasions 1, 2, or 3).

Equality of the unstandardized indicator intercepts across occasions was then examined in a scalar invariance model. The
factor mean and variance at occasion 1 were fixed to 0 and 1, respectively, for identification, but the factor means and
variances were then estimated at occasions 2, 3, and 4. All factor loadings (except for prose recall at occasion 4) and all
indicator intercepts were constrained equal across occasions; all indicator residual variances still differed over time. Factor
covariances and same-occasion residual covariances were estimated as described previously. The scalar invariance model
had excellent fit (as shown in Table 1) that was not significantly worse than the partial metric invariance model, —2ALL(6)
= 6.14, p = .407. The fact that full scalar invariance (i.e., “strong invariance”) held indicates that all occasions have the
same expected response for each indicator at the same absolute level of the latent factor, or that the observed difference in
the indicator means across occasions 1-4 was due to factor mean differences only.

Equality of the unstandardized indicator residual variances across occasions was then examined in a residual variance
invariance model. As in the scalar invariance model, the factor mean and variance were fixed to 0 and 1, respectively, at
occasion 1 for identification, but the factor means and variances were estimated at occasions 2, 3, and 4. All factor loadings
(except for prose recall at occasion 4), all outcome intercepts, and all indicator residual variances were constrained to be
equal over time. Factor covariances and same-occasion indicator residual covariances were estimated as described
previously. Although the residual variance invariance model had excellent global fit, it fit significantly worse than the
scalar invariance model, —2ALL(9) = 37.68, p <.001. Modification indices suggested that the residual variances of block
design and digit-symbol substitution at occasion 1 were the largest sources of misfit and should be freed. After doing so,
the partial residual variance invariance model had excellent fit (as shown in Table 1) that was not significantly worse than
the scalar invariance model, —2ALL(7) = 9.58, p = .214. The fact that partial residual variance invariance (i.e., “strict
invariance”) held indicates that the amount of indicator variance not accounted for by the latent factor was the same across
time (except for block design and digit-symbol substitution, for which there was more residual variance at occasion 1).

In the final invariance model, the factor means showed increasing decline over time, while the factor variances showed
increasing individual differences over time. The occasion-specific factors were highly correlated (r = .8 to .9). The extent to
which two higher-order factors—for an intercept and latent basis change (i.e., in a “curve of factors model”)—could
recreate the lower-order factor means, variances, and covariances was then examined. To create a meaningful model scale,
the factor loading for block design was fixed to 5.972, its value from the last invariance model in which the occasion 1
factor variance was fixed to 1. Consequently, the total SD will be = 1 for occasion 1, setting the scale of the latent factor.
All lower-order factor variances were estimated but constrained equal over time so that any heterogeneity of variance over
time in the lower-order factors would be captured by the higher-order factor for latent basis change. Likewise, all lower-
order factor covariances were fixed to 0 so that all factor correlation over time would be captured by the estimated variance
of the higher-order factors for intercept and latent basis change (and their estimated covariance). All lower-order factor
intercepts and the mean of the higher-order intercept factor were fixed to 0 for identification given the estimation of the
indicator intercepts. All same-occasion indicator residual covariances were estimated as in previous models. Finally, the
latent basis factor loadings were fixed to 0 and 1 at occasions 1 and 4, respectively, with estimated factor loadings at
occasions 2 and 3. Consequently, the higher-order intercept factor will capture the expected latent factor at occasion 1, and
the mean of the higher-order latent basis change factor will capture the amount of overall change in the latent factor across
the four occasions (whose time values are then replaced by the latent basis factor loadings).

Although the latent basis change model had excellent fit, it fit significantly worse than the last invariance model, —2ALL(6)
= 13.66, p = .034. Modification indices suggested that the occasion 4 factor intercept was the largest source of misfit and
should be freed. After doing so, the latent basis change invariance model had excellent fit (as shown in Table 1) that was
not significantly worse than the last invariance model, —2ALL(5) = 4.27, p = .511. Figure 1 displays the predicted lower-
order factor means and variances for each occasion. There was a significant average decline of 0.340 (as given by the mean
of the higher-order factor for latent basis change), 32.9% and 75.2% of which happened by occasions 2 and 3, respectively.
The occasion 4 intercept (capturing its deviation from the predicted trajectory) was significantly negative (-0.145). Wald
tests* indicated significant individual differences in the predicted latent outcome at occasion 1 and in its subsequent
decline, as captured by the variances of the higher-order intercept and latent basis change factors, respectively.

* Yes, | know that Wald tests should not be used for testing the significance of variances, but this is very common in SEM
world. In this case, the likelihood ratio tests would have agreed, and so I didn’t report those additional model comparisons.
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If longitudinal measurement falls apart, or the extent of “common” change across outcomes

is of interest, the alternative set of latent variable models below might be more useful...
Normally I would start with univariate growth models to ensure adequate fit of each (as shown for
unbalanced time in Example 4a) before moving to a multivariate growth model, but I'm skipping
ahead for brevity here. | am using a latent basis model for nonlinear trajectories here, but you could
use whichever pattern of change makes the most sense and fits relatively best.

Model 6a. Mplus Syntax for a Multivariate Growth Model—also known as a “Parallel Process”
Model—separate but simultaneous [latent basis] growth models per indicator, with all latent intercept,
slopes, and same—occasion correlated residuals:

MODEL: ! DATA, VARIABLE, ANALYSIS, OUTPUT are same

111111 6a. Latent Basis Growth Model per Indicator !!!!!! Example Image borrOV\.IEd from here WOUId
111111 All Possible Factor and Same-Occasion Residual havesgﬂomnhrnOdeblnﬁeadahdregdum
Correlations !!!!! covariances for same-occasion indicators

! Latent basis growth model per indicator
IntB BY blockl@l block2@l block3@1l block4@l;
IntP BY prosel@l prose2@l prose3Ql prosed(@l;
IntD BY digitl@l digit2@1l digit3@1 digit4@l;
S1pB BY blockl@0 block2* block3* block4@1l;
SlpD BY digitl@O0 digit2* digit3* digit4@l;
S1lpP BY prosel@0 prose2* prose3* prose4@l;

! Shut off indicator intercepts
[blockl-block4@0] ;
[digitl-digit4@O0];
[prosel-prose4@0] ;

x|1
! Constrain indicator residual
! variances equal over time
blockl-block4* (BR) ;

digitl-digit4* (DR);
prosel-prosed4* (PR);

",

Az
|
Xag

xzo‘ ‘ X1

S N A N N

! Same-occasion indicator residual covariances
blockl digitl prosel WITH blockl* digitl* prosel*;
block2 digit2 prose2 WITH block2* digit2* prose2*;
block3 digit3 prose3 WITH block3* digit3* prose3*;
block4 digit4 prose4 WITH block4* digité4* prosed*;

! Latent factor means estimated
[IntB* IntD* IntP* SlpB* SlpD* SlpP*];
! Latent factor variances estimated
IntB* IntD* IntP* SlpB* SlpD* S1lpP*;
! Latent factor covariances (all possible pairs)
IntB IntD IntP SlpB SlpD SlpP WITH IntB* IntD* IntP* SlpB* SlpD* SlpP*;

MODEL FIT INFORMATION

Number of Free Parameters 48
Loglikelihood
HO Value -13153.430
HO Scaling Correction Factor 1.1382
for MLR
H1 Value -13121.771
H1 Scaling Correction Factor 1.0595
for MLR
Information Criteria
Akaike (AIC) 26402.860
Bayesian (BIC) 26617.976
Sample-Size Adjusted BIC 26465.576

(n* = (n + 2) / 24)


https://www.sciencedirect.com/topics/psychology/latent-growth-model
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Chi-Square Test of Model Fit

Value 65.306%

Degrees of Freedom 42

P-Value 0.0121

Scaling Correction Factor 0.9696
for MLR

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.029

90 Percent C.I. 0.014 0.042

Probability RMSEA <= .05 0.997
CFI/TLI

CFI 0.993

TLI 0.989
SRMR (Standardized Root Mean Square Residual)

Value 0.022

MODEL RESULTS
Two-Tailed

Estimate S.E. Est./S.E. P-Value
PER-OUTCOME LATENT BASIS GROWTH MODELS
INTB BY
BLOCK1 1.000 0.000 999.000 999.000
BLOCK2 1.000 0.000 999.000 999.000
BLOCK3 1.000 0.000 999.000 999.000
BLOCK4 1.000 0.000 999.000 999.000
INTD BY
DIGIT1 1.000 0.000 999.000 999.000
DIGIT?2 1.000 0.000 999.000 999.000
DIGIT3 1.000 0.000 999.000 999.000
DIGIT4 1.000 0.000 999.000 999.000
INTP BY
PROSE1 1.000 0.000 999.000 999.000
PROSE?2 1.000 0.000 999.000 999.000
PROSE3 1.000 0.000 999.000 999.000
PROSE4 1.000 0.000 999.000 999.000
SLPB BY
BLOCK1 0.000 0.000 999.000 999.000
BLOCK2 0.349 0.074 4.695 0.000
BLOCK3 0.637 0.072 8.900 0.000
BLOCK4 1.000 0.000 999.000 999.000
SLPD BY
DIGIT1 0.000 0.000 999.000 999.000
DIGIT2 0.282 0.053 5.297 0.000
DIGIT3 0.570 0.102 5.612 0.000
DIGIT4 1.000 0.000 999.000 999.000
SLPP BY
PROSE1 0.000 0.000 999.000 999.000
PROSE?2 0.289 0.084 3.440 0.001
PROSE3 0.707 0.095 7.431 0.000
PROSE4 1.000 0.000 999.000 999.000

LATENT INTERCEPT AND SLOPE LEVEL-2 COVARIANCES (= RANDOM EFFECT COVARIANCES)

INTB WITH
INTD 65.009 4.136 15.720 0.000
INTP 19.112 1.413 13.523 0.000
SLPB -5.262 2.523 -2.086 0.037
SLPD -0.952 5.129 -0.186 0.853
SLPP 4.005 2.097 1.910 0.056
INTD WITH
INTP 33.788 2.539 13.307 0.000
SLPB -2.938 4.386 -0.670 0.503
SLPD -2.006 7.366 -0.272 0.785
SLPP 5.073 3.246 1.563 0.118
INTP WITH
SLPB 0.007 1.642 0.004 0.996
SLPD 1.565 3.434 0.456 0.649
SLPP 0.921 1.138 0.809 0.418

SLPB WITH
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SLPD 27.355 6.518 4.197 0.000
SLPP 8.267 2.532 3.265 0.001
SLPD WITH
SLPP 15.079 4.654 3.240 0.001
SAME-OCCASION INDICATOR LEVEL-1 RESIDUAL COVARIANCES
BLOCK1 WITH
DIGIT1 -0.062 1.679 -0.037 0.971
PROSE1 0.683 0.759 0.899 0.369
DIGIT1 WITH
PROSE1 1.314 1.241 1.059 0.289
BLOCK2 WITH
DIGIT2 3.408 1.267 2.690 0.007
PROSE2 0.642 0.521 1.233 0.218
DIGIT2 WITH
PROSE2 1.530 0.963 1.589 0.112
BLOCK3 WITH
DIGIT3 4.477 1.251 3.579 0.000
PROSE3 1.791 0.580 3.090 0.002
DIGIT3 WITH
PROSE3 1.120 1.135 0.987 0.324
BLOCK4 WITH
DIGIT4 2.599 2.027 1.283 0.200
PROSE4 0.639 1.022 0.625 0.532
DIGIT4 WITH
PROSE4 4.202 1.665 2.524 0.012
LATENT FACTOR MEANS (= FIXED INTERCEPTS AND SLOPES)
Means
INTB 10.264 0.298 34.490 0.000
INTP 8.541 0.184 46.318 0.000
INTD 21.188 0.500 42.365 0.000
SLPB -2.545 0.330 -7.718 0.000
SLPD -5.093 0.681 -7.483 0.000
SLPP -1.830 0.266 -6.885 0.000
INDICATOR INTERCEPTS (FIXED TO 0 SO CHANGE IS CAPTURED BY LATENT FACTORS)
Intercepts
BLOCK1 0.000 0.000 999.000 999.000
BLOCK2 0.000 0.000 999.000 999.000
BLOCK3 0.000 0.000 999.000 999.000
BLOCK4 0.000 0.000 999.000 999.000
DIGIT1 0.000 0.000 999.000 999.000
DIGIT2 0.000 0.000 999.000 999.000
DIGIT3 0.000 0.000 999.000 999.000
DIGIT4 0.000 0.000 999.000 999.000
PROSE1 0.000 0.000 999.000 999.000
PROSE2 0.000 0.000 999.000 999.000
PROSE3 0.000 0.000 999.000 999.000
PROSE4 0.000 0.000 999.000 999.000
LATENT FACTOR LEVEL-2 VARIANCES (= RANDOM INTERCEPT AND SLOPE COVARIANCES)
INTB 46.995 2.722 17.262 0.000
INTP 15.812 0.986 16.041 0.000
INTD 121.283 7.985 15.189 0.000
SLPB 17.592 3.853 4.566 0.000
SLPD 46.858 11.460 4.089 0.000
SLPP 6.887 1.938 3.553 0.000
Residual Variances -- INDICATOR LEVEL-1 RESIDUAL VARIANCES
BLOCK1 9.197 0.638 14.410 0.000
BLOCK2 9.197 0.638 14.410 0.000
BLOCK3 9.197 0.638 14.410 0.000
BLOCK4 9.197 0.638 14.410 0.000
DIGIT1 23.974 1.726 13.891 0.000
DIGIT2 23.974 1.726 13.891 0.000
DIGIT3 23.974 1.726 13.891 0.000
DIGIT4 23.974 1.726 13.891 0.000
PROSE1 5.135 0.403 12.750 0.000
PROSE2 5.135 0.403 12.750 0.000
PROSE3 5.135 0.403 12.750 0.000
PROSE4 5.135 0.403 12.750 0.000
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ESTIMATED CORRELATION MATRIX FOR THE LATENT VARIABLES -- FROM TECH4 (LAST)
INTB INTP INTD SLPB SLPD

INTB 1000 This table motivates the ne>_<t model—to
INTP 0.701 1.000 what extent are the correlations among the
INTD 0.861 0.772 1.000 latent intercept factors consistent with a
SLPB -0.183 0.000 -0.064 1.000 higher-order factor (and is the same true
SLPD -0.020 0.058 -0.027 0.953 1.000 separately for the latent slope factors)?
SLPP 0.223 0.088 0.176 0.751 0.839

Model 6b. Mplus Syntax for a “Factor of Curves” Model—Separate but simultaneous latent basis
growth models per indicator, with same—occasion correlated residuals, but replacing the covariances
among the six intercept and slope factors with two correlated higher-order factors:

MODEL: ! DATA, VARIABLE, ANALYSIS, OUTPUT are same

111111 Factor Correlations Replaced by Higher-Order Factors !!!!!

! Latent basis growth model per indicator
IntB BY blockl@l block2@l block3@l block4@l;
IntP BY prosel@l prose2@l prose3Ql prosed(@l;
IntD BY digitl@l digit2@1l digit3@1 digit4@l;
S1pB BY blockl@0 block2* block3* block4@1l;
SlpD BY digitl@O0 digit2* digit3* digit4@l;
S1lpP BY prosel@0 prose2* prose3* prose4@l;

! Shut off indicator intercepts
[blockl-block4@0] ;
[digitl-digit4@0];
[prosel-prose4@0] ;

! Constrain indicator residual variances equal over time
blockl-block4* (BR) ;
digitl-digit4* (DR) ;
prosel-prosed4* (PR);

! Same-occasion indicator residual covariances
blockl digitl prosel WITH blockl* digitl* prosel*;
block2 digit2 prose2 WITH block2* digit2* prose2*;
block3 digit3 prose3 WITH block3* digit3* prose3*;
block4 digit4 prose4 WITH block4* digit4* prosed*;

! Latent factor intercepts estimated
[IntB* IntD* IntP* SlpB* SlpD* SlpP*];

! Latent factor disturbance variances estimated
IntB* IntD* IntP* SlpB* SlpD* S1lpP*;

11111 BEGIN NEW PART: Higher-order factors !!!tfttitnt
IntHO BY IntB* IntD* IntP¥*;
S1pHO BY SlpB* SlpD* SlpP* (S1pLB S1lpLD S1lpLP); ! Labels for MODEL CONSTRAINT below

! Higher-order factor means fixed to 0 for identification
[IntHOQRO S1pHOQRO] ;

! Higher-order factor variances fixed to 1 for identification
IntHO@1 S1pHOQ@1;

! Higher-order factor covariance estimated
IntHO WITH S1pHO¥*;

MODEL CONSTRAINT:
S1pLB>0; S1pLD>0; Sl1lpLP>0; ! Force unstandardized slope factor loadings to be positive

My first attempt resulted in negative unstandardized loadings for the higher-order slope factor, which |
thought could be confusing, so | then added model constraints to force them to stay positive.
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Example image borrowed from here would
add residual covariances for same-occasion
indicators and disturbance covariance for
the latent factors for the same variable
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Figure 2. A path diagram of a factor of curves (FOCUS) model with three constructs across four measurement

Oze1

occasions.

MODEL FIT INFORMATION

Number of Free Parameters 43
Loglikelihood Saved DF=5... how?
HO Value -13157.166 3 intercept covariances = 3 HO intercept loadings
HO Scaling Correction Factor 1.1599 3 change covariances = 3 HO change loadings
for MLR 6 intercept—change covariances across outcomes
H1 Value -13121.771 . .
H1 Scaling Correction Factor 1.0595 2> 1HO lntercepH:hange covariance
for MLR
Information Criteria w - .
Akaike (AIC) 26400.331 Does the “factor of curves model (6b) .flt
Bayesian (BIC) 26593.039 worse than the multivariate all correlations
Sample-Size Adjusted BIC 26456.514 rnodeI(GaY?
, (n* = (n +2) / 24) No, —2ALL(df=5) = 7.852, p = .1646
Chi-Square Test of Model Fit
Value 73.157*
Degrees of Freedom 47
P-Value 0.0086
Scaling Correction Factor 0.9676
for MLR
RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.029
90 Percent C.I. 0.015 0.042
Probability RMSEA <= .05 0.998
CFI/TLI
CFI 0.992
TLI 0.989
SRMR (Standardized Root Mean Square Residual)
Value 0.029

STANDARDIZED MODEL RESULTS -- RELEVANT OUTPUT FOR HIGHER-ORDER FACTORS ONLY:
Two-Tailed

Estimate S.E. Est./S.E. P-Value
INTHO BY -- COMMON HIGHER-ORDER INTERCEPT FACTOR LOADINGS
INTB 0.875 0.023 38.848 0.000
INTD 0.964 0.020 49.254 0.000
INTP 0.819 0.024 34.845 0.000
SLPHO BY -- COMMON HIGHER ORDER LATENT CHANGE FACTOR LOADINGS
SLPB 0.903 0.099 9.105 0.000
SLPD 0.958 0.100 9.577 0.000
SLPP 0.944 0.114 8.253 0.000
INTHO WITH COMMON HIGHER-ORDER FACTOR CORRELATION

SLPHO 0.045 0.112 0.402 0.688


https://doi.org/10.1037/fam0000379

SAME-VARIABLE INTERCEPT-CHANGE
INTB

INTD

INTP

WITH

WITH

-0.

-0.

-0.

Latent Factor Correlations

6a Multivariate Change Model

INTB
INTP
INTD
SLPB
SLPD
SLPP

INTB

1.0

701
.861
-.183
-.020
223

INTP

1.0
772
.000
.058
.088

6b Factor of Curves Model

INTB
INTP
INTD
SLPB
SLPD
SLPP

Discrepancy

INTB
INTP
INTD
SLPB
SLPD
SLPP

INTB

1.0

717
.843
-.131
.038
.037

INTB
.000
-.016
.018
-.052
-.058
.186

INTP

1.0
.789
.033
.035

-.038

INTP

.000
-.017
-.033

.023

126

803 0.234
428 0.462
388 0.284
INTD SLPB
1.0
-.064 1.0
-.027 .953
176 751
INTD SLPB
1.0
.039 1.0
.009 .865
.041 .853
INTD SLPB
.000
-.103 .000
-.036 .088
135 -.102

FACTOR CORRELATIONS

-3.428 0.001
-0.928 0.354
-1.367 0.172
SLPD SLPP
1.0
.839 1.0
SLPD SLPP
1.0
.904 1.0
SLPD SLPP
.000
-.065 .000

Sample results section for these “factor of curve” models:
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The extent of relations for individual differences in change over time (four occasions collected at two-year intervals) in
three observed indicators (block design, digit—symbol substitution, and prose recall) was examined using Mplus v. 8.11
(Muthén & Muthén, 1998-2017). Robust maximum likelihood (MLR) estimation was used for all analyses; nested model
comparisons were conducted using the rescaled difference in the model —2LL values with degrees of freedom equal to the
difference in the number of model parameters. For each outcome, we examined change over time using a latent basis factor,
whose loadings were fixed to 0 and 1 at occasions 1 and 4, respectively, with estimated factor loadings at occasions 2 and

3. Consequently, the intercept factors will capture the expected latent factor at occasion 1, and the mean of the latent basis
change factor will capture the amount of overall change in the latent factor across the four occasions (whose time values are
then replaced by the latent basis factor loadings). [Would describe results for each univariate model of change first.]

We then examined relations of latent intercept and latent basis change factors across the three observed outcomes in a
multivariate model predicting each outcome (over four occasions, for 12 outcomes in total). As reported in [Table with
latent variable correlations from Model 6a], the intercept factors were correlated .70, .86, and .77, indicating evidence of a
common factor for cognition at the first occasion. Likewise, the latent basis change factors were correlated .95, .75, and .84,
indicating evidence of a common factor for change in cognition over the four occasions. We then examined the extent to
which the intercept correlations and latent change correlations could be adequately reproduced by common latent intercept
and latent change factors, respectively, as well as the extent to which the correlations across the intercepts and slopes could
be reproduced by a single correlation between the higher-order intercept and change factors. The resulting “factor of
curves” model fit nonsignificantly worse, —2ALL(5) = 7.852, p = .1646, indicating successful correlation reproduction.



