Example 6a: Graded Response Ordinal IFA-IRT Models in Mplus v. 8.8 (complete syntax and output available electronically)

This example comes from the Octogenarian Twin Study of Aging in Sweden. The current analysis includes 634 older adults (age 80–100 years) self-reporting on seven four-category items assessing the Instrumental Activities of Daily Living (IADL). Note: I have also included R syntax in the online files, but the lavaan default of listwise deletion must be switched to pairwise deletion for the WLSMV results to match those of Mplus!

0.09

0.07

0.09

0.10

0.06

0.06

0.01

.022

.024

.031

.013

.019

.032

.020

.034

.032

ltem

1

2

3

4

5

6

7

0=Can't Do It 1=Big Problems 2=Some Problems 3=Can Do It

0.26

0.12

0.15

0.19

0.21

0.12

0.08

0.08

0.04

0.05

0.09

0.16

0.08

0.03

Proportion of responses per category:

- 1. Housework (cleaning and laundry)
- 2. Bedmaking
- 3. Cooking
- 4. Everyday shopping
- 5. Getting to places outside of walking distance
- 6. Handling banking and other business
- 7. Using the telephone

CIA1

.010

.010

.012

.018

.024

.045

.024

.029

.048

CIA1

CIA2

CIA3

CIA4

CIA5

CIA6

CIA7

Comparing Polychoric vs. Pearson Correlation Matrices for 7 Ordinal Item Responses

(see online files for code and output of saturated model that generated these correlations)

.012

.018

.046

.021

.052

.050

.026

.027

.046

Polychoric Correlation Estimates						Pearson Correlation Estimates							
	CIA1	CIA2	CIA3	CIA4	CIA5	CIA6		CIA1	CIA2	CIA3	CIA4	CIA5	CIA6
CIA1							CIA1						
CIA2	.937						CIA2	.820					
CIA3	.925	.924					CIA3	.835	.835				
CIA4	.913	.891	.870				CIA4	.840	.768	.766			
CIA5	.849	.829	.796	.904			CIA5	.753	.679	.672	.822		
CIA6	.814	.794	.813	.873	.842		CIA6	.686	.660	.669	.749	.708	
CIA7	.680	.694	.708	.723	.637	.673	CIA7	.464	.487	.496	.472	.402	.469

CIA5

CIA6

CIA7

Polychoric Correlation Standard Errors Pearson Correlation Standard Errors CIA2 CIA4 CIA5 CIA2 CIA3 CIA3 CIA6 CIA1 CIA4 CIA5 CIA6 CIA1 t2 CIA2 .013 .012 .012 CIA3 .012 .016 .018 CIA4 .012 .017 .017

.018

.022

.032

.022

.023

.031

Polychoric correlation is analogous to tetrachoric correlation: They are both based on a bivariate normal distribution, and they both try to represent the correlation that would have created the proportion of responses in each section.

0.58

0.77

0.72

0.62

0.57

0.74

0.88

They differ in the number of cells of each pairwise contingency table (and the corresponding degree of division of the bivariate normal distribution at the thresholds).

I found this website that provides a more thorough description with some helpful examples.

PSQF 6249 Example 6a page 2

Graded Response Model Syntax for 2PL-ish model (left) and 1PL-ish model (right) using ML and a logit link function:

TITLE: Ordinal Models using Full-Info ML	TITLE: Ordinal Models using Full-Info ML					
DATA: FILE = Example6a.csv; ! Don't need path if in same directory FORMAT = free; ! Default TYPE = INDIVIDUAL; ! Default	DATA: FILE = Example6a.csv; ! Don't need path if in same directory FORMAT = free; ! Default TYPE = INDIVIDUAL; ! Default					
<pre>VARIABLE: NAMES = case cial-cia7;</pre>	<pre>VARIABLE: NAMES = case cial-cia7;</pre>					
ANALYSIS: TYPE = GENERAL; ! Default ESTIMATOR = ML; LINK = LOGIT; ! Full-info ML in logits CONVERGENCE = 0.0000001; ! For OS comparability	ANALYSIS: TYPE = GENERAL; ! Default ESTIMATOR = ML; LINK = LOGIT; ! Full-info ML in logits CONVERGENCE = 0.0000001; ! For OS comparability					
OUTPUT: STDYX; ! Standardized solution TECH10; ! Local misfit for full-info ML	OUTPUT: STDYX; ! Standardized solution TECH10; ! Local misfit for full-info ML					
SAVEDATA:SAVE = FSCORES;! Save factor scores (thetas)FILE = Thetas2Pish.dat;! File factor scores saved toMISSFLAG = 99999;! Missing data value in file	SAVEDATA:SAVE = FSCORES;! Save factor scores (thetas)FILE = Thetas1Pish.dat;! File factor scores saved toMISSFLAG = 99999;! Missing data value in file					
PLOT: TYPE = PLOT1; ! PLOT1 gets you sample descriptives TYPE = PLOT2; ! PLOT2 gets you the IRT-relevant curves TYPE = PLOT3; ! PLOT3 gets you descriptives for theta	PLOT: TYPE = PLOT1; ! PLOT1 gets you sample descriptives TYPE = PLOT2; ! PLOT2 gets you the IRT-relevant curves TYPE = PLOT3; ! PLOT3 gets you descriptives for theta					
MODEL: ! Original Graded Response Model (separate loadings per item)	MODEL: ! Constrained Graded Response Model (<u>same</u> loading for all items)					
<pre>! Original GRM: Factor loadings all estimated and labeled IADL BY cial-cia7* (L_I1-L_I7); ! Item thresholds all estimated and labeled ! You don't have to type these unless you want to make difficulties ! If any listed are not observed, Mplus will throw an error [cial\$1-cia7\$1*] (TI I1-TI I7);</pre>	<pre>! Factor loadings constrained equal to single label IADL BY cial-cia7* (L); ! Item thresholds all estimated and labeled ! You don't have to type these unless you want to make difficulties ! If any listed are not observed, Mplus will throw an error [cial\$1-cia7\$1*] (T1_I1-T1_I7);</pre>					
<pre>[cial\$2-cia7\$2*] (T2_I1-T2_I7); [cial\$3-cia7\$3*] (T3_I1-T3_I7); ! Will become Factor mean=0 and variance=1 below for identification [IADL*] (FactMean); IADL* (FactVar);</pre>	<pre>[cia1\$2-cia7\$2*] (T2_I1-T2_I7); [cia1\$3-cia7\$3*] (T3_I1-T3_I7); ! Will become Factor mean=0 and variance=1 below for identification [IADL*] (FactMean); IADL* (FactVar);</pre>					
<pre>MODEL CONSTRAINT: ! Factor identification here so can use below FactMean=0; FactVar=1;</pre>	<pre>MODEL CONSTRAINT: ! Factor identification here so can use below FactMean=0; FactVar=1; NEW(L_I1-L_I7); DO (1,7) L_I# = L; ! For 1PL model</pre>					
<pre>! Creating new IRT parameters ! A = discrimination, B1=y>0, B2=y>1, B3=y>2 NEW(A_I1-A_I7 B1_I1-B1_I7 B2_I1-B2_I7 B3_I1-B3_I7); ! D0 (begin, end), replace # with index ! Discriminations D0 (1,7) A_I# = L_I# * SQRT(FactVar); ! Difficulties D0 (1,7) B1_I# = (T1_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar)); D0 (1,7) B2_I# = (T2_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar)); D0 (1,7) B3_I# = (T3_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar));</pre>	<pre>! Creating new IRT parameters ! A = discrimination, B1=y>0, B2=y>1, B3=y>2 NEW(A_I1-A_I7 B1_I1-B1_I7 B2_I1-B2_I7 B3_I1-B3_I7); ! D0 (begin, end), replace # with index ! Discriminations D0 (1,7) A_I# = L_I# * SQRT(FactVar); ! Difficulties D0 (1,7) B1_I# = (T1_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar)); D0 (1,7) B2_I# = (T2_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar)); D0 (1,7) B3_I# = (T3_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar));</pre>					

Graded Response Model 2PL-ish Model Fit (left) and 1PLish Model Fit (right) using ML logit:

MODEL FIT INFORMATION		MODEL FIT INFORMATION				
Number of Free Parameters	28	Number of Free Parameters	22			
Loglikelihood		Loglikelihood				
HO Value	-2523.585	HO Value	-2591.310			
Information Criteria		Information Criteria				
Akaike (AIC)	5103,171	Akaike (AIC)	5226.620			
Bavesian (BIC)	5227.828	Bavesian (BIC)	5324.565			
Sample-Size Adjusted BIC	5138,931	Sample-Size Adjusted BIC	5254.717			
$(n^* = (n + 2) / 24)$	0100.001	$(n^* = (n + 2) / 24)$				
Chi-Square Test of Model Fit for th (Ordinal) Outcomes**	e Binary and Ordered Categorical	Chi-Square Test of Model Fit for the (Ordinal) Outcomes**	Binary and Ordered Categorical			
Pearson Chi-Square		Pearson Chi-Square				
Value	1876.488	Value	2650.119			
Degrees of Freedom	16317	Degrees of Freedom	16321			
P-Value	1.0000	P-Value	1.0000			
Likelihood Ratio Chi-Squa	re	Likelihood Ratio Chi-Square	e			
Value	676.937	Value	803.028			
Degrees of Freedom	16317	Degrees of Freedom	16321			
P-Value	1.0000	P-Value	1.0000			
** Of the 48600 cells in the latent were deleted in the calculation o	class indicator table, 38 f chi-square due to extreme values.	 ** Of the 48600 cells in the latent class indicator table, 40 were deleted in the calculation of chi-square due to extreme values. This error message indicates that these 2 sets of chi-squares are not on the same scale. We need to test the -2LL difference instead. 				

Does the 2PL-ish version of the GRM (original with separate loadings) fit better than the 1PL-ish version (constrained same loading)?

 $-2523.585^{*}-2 = 5047.170$ -2591.310*-2 = 5182.620 -2ΔLL = 135.45, df = 6, *p* < .0001 AIC and BIC are smaller for original GRM with separate loadings, too

3 differently scaled solutions from ML logit—all provide the exact same predictions!

UNSTANDARDIZE	D MODEL RESU	LTS (IF)	A MODEL	SOLUTION)	(output from	same model	continue	d)		
					RESULTS FROM	IRT MODEL	GIVEN BY	NEW PARAM	ETERS :	
				Two-Tailed		-	-		Two-Tailed	
	Estimate	S.E.	Est./S.E.	P-Value		Estimate	S.E.	Est./S.E.	P-Value	
FACTOR LOADINGS =	= CHANGE IN LOG	IT(Y) PER	UNIT CHAN	GE IN THETA	New/Additional	Parameters				
IADL BY					DISCRIMINATIONS	= SLOPE AT EA	CH DIFFICUL	TY VALUE (=	LOADING HERE)	
CIA1	6.846	0.841	8.140	0.000	A T1	6.846	0.841	8.140	0.000	
CIA2	5.200	0.555	9.363	0.000	ат2	5,200	0.555	9,363	0.000	
CIA3	4.613	0.456	10.119	0.000	A T 3	4,613	0.456	10,119	0.000	
CIA4	5.701	0.612	9.312	0.000		5 701	0.100	9 312	0,000	
CIA5	3.556	0.298	11.950	0.000	Δ Τ 5	3 556	0.012	11 950	0,000	
CIA6	2.897	0.261	11.094	0.000		2 897	0.250	11 094	0.000	
CIA7	1.778	0.209	8.512	0.000	A I7	1.778	0.209	8.512	0.000	
					—					
THRESHOLDS = EXPE	SCTED LOGIT (Y=0)) WHEN THE	STA IS 0 (1	MEAN OF SAMPLE)	DIFFICULTIES =	THETA AT WHICH	PROB OF NE	XT OPTION =	.50	
CIAIȘI	-9.808	1.138	-8.620	0.000	B1_I1	-1.433	0.079	-18.127	0.000	
CIA1\$2	-6.460	0.799	-8.088	0.000	B1_I2	-1.566	0.088	-17.807	0.000	
CIA1\$3	-1.238	0.384	-3.226	0.001	B1 I3	-1.483	0.086	-17.205	0.000	
CIA2\$1	-8.145	0.794	-10.257	0.000	B1 I4	-1.308	0.076	-17.175	0.000	
CIA2\$2	-6.313	0.618	-10.219	0.000	B1 I5	-1.850	0.104	-17.748	0.000	
CIA2\$3	-3.737	0.441	-8.480	0.000	B1 I6	-1.911	0.120	-15.976	0.000	
CIA3\$1	-6.841	0.613	-11.162	0.000	B1 I7	-3.268	0.320	-10.223	0.000	
CIA3\$2	-5.194	0.480	-10.810	0.000	B2_I1	-0.944	0.059	-16.004	0.000	
CIA3\$3	-2.572	0.330	-7.792	0.000	B2 I2	-1.214	0.072	-16.870	0.000	
CIA4\$1	-7.454	0.747	-9.975	0.000	B2 I3	-1.126	0.070	-16.068	0.000	
CIA4\$2	-4.635	0.514	-9.026	0.000	B2_I4	-0.813	0.058	-14.128	0.000	
CIA4\$3	-1.426	0.327	-4.366	0.000	B2_I5	-0.855	0.063	-13.574	0.000	
CIA5\$1	-6.578	0.494	-13.314	0.000	B2_I6	-1.237	0.083	-14.933	0.000	
CIA5\$2	-3.041	0.273	-11.155	0.000	B2_I7	-2.474	0.215	-11.507	0.000	
CIA5\$3	-0.681	0.203	-3.354	0.001	B3 ⁻ I1	-0.181	0.049	-3.714	0.000	
CIA6\$1	-5.538	0.411	-13.486	0.000	B3 I2	-0.719	0.055	-13.083	0.000	
CIA6\$2	-3.583	0.285	-12.554	0.000	в3_13	-0.558	0.054	-10.386	0.000	
CIA6\$3	-2.044	0.219	-9.344	0.000	в3_14	-0.250	0.050	-5.029	0.000	
CIA7\$1	-5.810	0.472	-12.315	0.000	B3 T5	-0.192	0.054	-3.548	0.000	
CIA7\$2	-4.398	0.322	-13.673	0.000	B3 T6	-0.705	0.063	-11,169	0.000	
CIA7\$3	-2.951	0.237	-12.457	0.000	B3 I7	-1.660	0.136	-12.244	0.000	
USING RESULTS	FROM IFA MO	DEL:			USING RESULT	S FROM IRT	MODEL WHE	N THETA~N	(0,1):	
, , , ,									. , .	
IFA model: Logit((y=1) = -threshold	$\frac{10}{10} + 10ac$	ling (Theta	<u>)</u>	IRT model: Logi	t(y) = a(theta	- difficul	ty)		
Threshold = expect	cted logit of (y=0) for s	someone wi	th Theta=0	a = discriminat	ion (rescaled	slope) = lo	ading		
When *-1, threshold becomes intercept: expected logit for (y=1) instead				b = difficulty	<pre>b = difficulty (location on latent metric) = threshold/loading</pre>					
Loading - regress	SIGH OF ICEM IO	g10 011 1116	= ca							
For 4-category responses, the submodels look like this:				For 4-category	For A-asterony responses the submodels look like this:					
Logit(y= 0 vs 123) = -threshold\$1 + loading(Theta)					$\frac{101}{100} = 0$ v	s = 123 = a (The	ta - diffic	$\frac{100k}{11kc}$		
Logit(y= 01 vs 23		$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	$\frac{1}{2} \operatorname{Logit}(y = 0) = a(\operatorname{Ineta} - \operatorname{difficulty}(y))$							
Logit(y= 012 vs 3		\$3 Logit(y= 012	vs 3) = a(The	ta - diffic	ulty\$3)					
EVANDLE TEX Made										
AL THE LEA MODEL		EXAMPLE IRT Mod	el FOR CIA1:							
S1 Log1t (CLAI=0 VS 123) = $9.808 + 6.846$ (Theta) \rightarrow 11 Theta=0, prob=.99994					9994 \$1 Logit(CIA1=0	\$1 Logit(CIA1=0 vs 123)= 6.846(Theta1.433)				
<pre>\$2 Logit(CIA1=01</pre>	<pre>rneta=0, prob=.9</pre>	9844 \$2 Logit(CIA1=0	1 vs 23)= 6.84	6(Theta	0.944)					
\$3 Logit(CIA1=012	Theta=0, prob=.7	7522 \$3 Logit(CIA1=0	\$3 Logit(CIA1=012 vs 3)= 6.846(Theta0.181)							

Mplus Category Response Curves - Item 1 (is good with steep discrimination) and Item 7 (is less good because is less steep)

IADL Theta (Mean=0. Variance=1

Spread of Item Difficulty (made in excel):

Some items (5, 6, and 7) have a wider spread of their b1 and b2 category thresholds, whereas they are closer together for the others. This suggests that those options are less differentiable for item 1–4. Besides adding more difficult items, another way to improve measurement of high thetas would be to expand the higher response options (e.g., from "can do it" to "can do it sometimes" or "can do it always").

What do consider when making a short form: If we wanted to improve our test by adding more difficult items but keep it the same length, then we'd need to remove some of the current items. These plots show why one must consider the combination of discrimination and difficulty in selecting which items could be removed. For instance, item 7 has the lowest discrimination (slope), but it covers a range of low theta that none of the other items do, so we should keep it for that reason. Instead, items 2 and 3 might be good candidates for removal, as they have lower discriminations than other items in their theta range.

Here is another estimation approach: a 2P vs. a 1P for Binary Responses using WLSMV and a Probit Link (see the online syntax and output files for the corresponding lavaan version using pairwise deletion as in Mplus WLSMV)

TITLE: Ord	dinal items using limited-info WLSMV	TITLE: Ordinal items using limited-info WLSMV				
DATA: FII VARIABLE:	LE = Example6a.csv; ! Don't need path if data in same folder NAMES = case cia1-cia7; ! All vars in data USEVARIABLES = cia1-cia7; ! All vars in model CATEGORICAL = cia1-cia7; ! All ordinal outcomes MISSING = ALL (99999); ! Missing value code IDVARIABLE = case; ! Person ID variable	DATA: FI VARIABLE:	<pre>LE = Example6a.csv; ! Don't need path if data in same folder NAMES = case cial-cia7;</pre>			
ANALYSIS:	ESTIMATOR = WLSMV; ! Limited-info in probits PARAMETERIZATION = THETA; ! Error vars=1 scaling CONVERGENCE = 0.0000001; ! For OS comparability	ANALYSIS:	ESTIMATOR = WLSMV; ! Limited-info in probits PARAMETERIZATION = THETA; ! Error vars=1 scaling CONVERGENCE = 0.0000001; ! For OS comparability DIFFTEST=2P.dat; ! Use saved info from bigger model			
OUTPUT :	<pre>STDYX RESIDUAL; ! Standardized solution, local misfit MODINDICES (6.635); ! Cheat codes for p<.01 for df=1</pre>	OUTPUT:	STDYX RESIDUAL; ! Standardized solution, local misfit MODINDICES (6.635); ! Cheat codes for p<.01 for df=1			
PLOT:	TYPE = PLOT1 PLOT2 PLOT3; ! Get all IRT plots	PLOT:	TYPE = PLOT1 PLOT2 PLOT3; ! Get all IRT plots			
SAVEDATA:	DIFFTEST=2P.dat; ! Save info from bigger model					
MODEL: ! O	riginal Graded Response Model (separate loadings per item)	MODEL: ! C	onstrained Graded Response Model (same loading for all items)			
<pre>! Factor ld IADL BY d ! Item thre ! If any li [cial\$1-cia[cial\$2-d [cial\$2-d [cial\$3-d ! Item erro cial-cia] ! Direct Fa ! are using [IADL@0</pre>	<pre>badings all estimated and labeled bial-cia7* (L_II-L_I7); esholds all estimated and labeled isted are not observed, Mplus will throw an error bia7\$1*] (T1_II-T1_I7); bia7\$2*] (T2_II-T2_I7); bia7\$2*] (T3_II-T3_I7); br variances fixed at 1 for identification 701; actor mean=0 and variance=1 for identification (because we g DIFFTEST, which does not allow MODEL CONSTRAINTS) D]; IADL01;</pre>	<pre>! Factor loadings constrained equal to single label IADL BY cia1-cia7* (L); ! Item thresholds all estimated and labeled ! If any listed are not observed, Mplus will throw an error [cia1\$1-cia7\$1*] (T1_I1-T1_I7); [cia1\$2-cia7\$2*] (T2_I1-T2_I7); [cia1\$2-cia7\$3*] (T3_I1-T3_I7); ! Item error variances fixed at 1 for identification cia1-cia7@1; ! Direct Factor mean=0 and variance=1 for identification (because we ! are using DIFFTEST, which does not allow MODEL CONSTRAINTS) [IADL@0]; IADL@1;</pre>				
! If not us ! Will becc [IADL*] IADL* MODEL CONST FactMean=0;	sing DIFFTEST, then can get IRT parameters as before ome Factor mean=0 and variance=1 for identification] (FactMean); (FactVar); TRAINT: ! Identification here so can use below ; FactVar=1;	! If not u ! Will bec [IADL* IADL* MODEL CONS FactMean=0 NEW(L_I1	<pre>sing DIFFTEST, then can get IRT parameters as before ome Factor mean=0 and variance=1 for identification] (FactMean); (FactVar); TRAINT: ! Identification here so can use below ; FactVar=1; -L_I7); DO (1,7) L_I# = L; ! For 1PL model</pre>			
<pre>! Creating ! A = discr NEW(A_II- ! DO (begin ! Discrimin DO (1,7) ! Difficult DO (1,7) DO (1,7) DO (1,7)</pre>	<pre>new IRT parameters rimination, B1=y>0, B2=y>1, B3=y>2 -A_I7 B1_I1-B1_I7 B2_I1-B2_I7 B3_I1-B3_I7); n, end), replace # with index nations A_I# = L_I# * SQRT(FactVar); ties B1_I# = (T1_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar)); B2_I# = (T2_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar)); B3_I# = (T3_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar));</pre>	<pre>! Creating ! A = disc NEW(A_I1 ! DO (begi: ! Discrimi: DO (1,7) DO (1,7) DO (1,7) DO (1,7)</pre>	<pre>new IRT parameters rimination, B1=y>0, B2=y>1, B3=y>2 -A_I7 B1_I1-B1_I7 B2_I1-B2_I7 B3_I1-B3_I7); n, end), replace # with index nations A_I# = L_I# * SQRT(FactVar); ties B1_I# = (T1_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar)); B2_I# = (T2_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar)); B3_I# = (T3_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar));</pre>			

Graded Response Model 2PL-ish Model Fit (left) and 1PLish Model Fit (right) using WLSMV and probit link:

MODEL FI	T INFORMATION		MODEL FIT INFORMATION					
Number o	f Free Parameters	28	Number of Free Parameters	22				
Chi-Squa	re Test of Model Fit		Chi-Square Test of Model Fit					
-	Value	96.262*	Value	202.568*				
	Degrees of Freedom	14	Degrees of Freedom	20				
	P-Value	0.0000	P-Value	0.0000				
			Chi-Square Test for Difference Testing	(analog to LRT in ML)				
			Value	93.825				
			Degrees of Freedom	6				
			P-Value	0.0000				
RMSEA (R	oot Mean Square Error Of Approxi	mation)	RMSEA (Root Mean Square Error Of Approximation)					
	Estimate	0.096	Estimate	0.120				
	90 Percent C.I.	0.079 0.115	90 Percent C.I.	0.105 0.135				
	Probability RMSEA <= .05	0.000	Probability RMSEA <= .05	0.000				
CFI/TLI			CFI/TLI					
	CFI	0.997	CFI	0.993				
	TLI	0.995	TLI	0.993				
SRMR (St	andardized Root Mean Square Resi	dual)	SRMR (Standardized Root Mean Square Residual)					
	Value	0.021	Value	0.077				
			Right: the Chi-Square for Difference Testing tells us directly that the 2P version of the polytomous model fits significantly better (now using WLSMV, but same conclusion as when using ML).					

Here are the parameter estimates under WLSMV Theta Parameterization (Probit) for the 2P version of ordinal responses

UNSTANDARDI	ZED MODEL RESUL	TS (IFA	MODEL	SOLUTION)	RESULTS FRO	M IRT MODEL G	IVEN BY	NEW PARA	METERS:	
				Two-Tailed					Two-Tailed	
	Estimate	S.E.	Est./S.E.	P-Value		Estimate	S.E.	Est./S.E.	P-Value	
					New/Additional	l Parameters				
FACTOR LOADING	GS = CHANGE IN PROBI	T(Y=1) P	ER UNIT C	HANGE IN THETA						
IADL BY					DISCRIMINATION	NS = SLOPE AT EAC	H DIFFICUL	TY VALUE		
CIA1	3.655	0.330	11.086	0.000	A I1	3.655	0.330	11.086	0.000	
CIA2	3.347	0.388	8.630	0.000	A 12	3.347	0.388	8.630	0.000	
CIA3	2.923	0.269	10.881	0.000	A I3	2.923	0.269	10.881	0.000	
CIA4	3.286	0.299	11.008	0.000	A I4	3.286	0.299	11.008	0.000	
CIA5	2.222	0.159	13.963	0.000	A 15	2.222	0.159	13.963	0.000	
CIA6	1.907	0.169	11.305	0.000	A I6	1.907	0.169	11.305	0.000	
CIA7	1.075	0.130	8.280	0.000	A 17	1.075	0.130	8.280	0.000	
					-					
THRESHOLDS = E	EXPECTED PROBIT (Y=0)	WHEN TH	ETA IS 0		DIFFICULTIES =	THETA AT WHICH	PROB OF NE	XT OPTION =	= .50)	
CIA1\$1	-5.150	0.424	-12.140	0.000	B1 I1	-1.409	0.080	-17.669	0.000	
CIA1\$2	-3.657	0.347	-10.536	0.000	B1 I2	-1.523	0.087	-17.606	0.000	
CIA1\$3	-0.734	0.217	-3.383	0.001	B1 I3	-1.435	0.084	-17.013	0.000	
CIA2\$1	-5.097	0.497	-10.252	0.000	B1 I4	-1.333	0.078	-17.089	0.000	
CIA2\$2	-4.254	0.445	-9.550	0.000	B1 I5	-1.740	0.100	-17.385	0.000	
CIA2\$3	-2.620	0.353	-7.424	0.000	B1 I6	-1.809	0.113	-16.054	0.000	
CIA3\$1	-4.193	0.327	-12.825	0.000	B1 I7	-3.054	0.284	-10.735	0.000	
CIA3\$2	-3.403	0.296	-11.486	0.000	B2 I1	-1.001	0.065	-15.310	0.000	
CIA3\$3	-1.762	0.232	-7.592	0.000	B2 I2	-1.271	0.074	-17.066	0.000	
CIA4\$1	-4.379	0.342	-12.794	0.000	B2 I3	-1.165	0.073	-16.020	0.000	
CIA4\$2	-2.987	0.269	-11.106	0.000	B2 I4	-0.909	0.064	-14.124	0.000	
CIA4\$3	-1.024	0.211	-4.863	0.000	B2 I5	-0.852	0.064	-13.232	0.000	
CIA5\$1	-3.866	0.233	-16.615	0.000	B2 I6	-1.234	0.081	-15.174	0.000	
CIA5\$2	-1.892	0.160	-11.857	0.000	B2 I7	-2.397	0.207	-11.555	0.000	
CIA5\$3	-0.424	0.130	-3.275	0.001	B3 I1	-0.201	0.054	-3.730	0.000	
CIA6\$1	-3.451	0.235	-14.697	0.000	B3 I2	-0.783	0.059	-13.333	0.000	
CIA6\$2	-2.354	0.184	-12.804	0.000	B3 I3	-0.603	0.058	-10.391	0.000	
CIA6\$3	-1.400	0.154	-9.071	0.000	B3 I4	-0.312	0.054	-5.734	0.000	
CIA7\$1	-3.282	0.249	-13.171	0.000	B3 I5	-0.191	0.055	-3.467	0.001	
CIA7\$2	-2.577	0.181	-14.232	0.000	B3 I6	-0.734	0.064	-11.550	0.000	
CIA7\$3	-1.757	0.137	-12.841	0.000	B3 I7	-1.635	0.138	-11.888	0.000	
					_					
For 4-category	y responses, the sub	-models	look like	this:	LOCAL FIT V	IA STANDARDIZ	ED RESID	UAL CORRI	ELATIONS	
Probit(y= 0 vs	s 123) = -threshold\$	31 + load	ling(Theta	.)	LEFTOVER PO	LYCHORIC CORR	ELATION	(HOW FAR	OFF FROM	DATA)
Probit(y= 01 v	vs 23) = -threshold\$	32 + load	ling (Theta	.)				(,
Probit y= 012	vs 3) = -threshold\$	3 + load	ling(Theta	.)	Residuals for	Covariances/Corr	elations/R	esidual Co	rrelations	
					CIA1	CIA2 CIA3	CIA4	CIA5	CIA6	
For 4-category	y responses, the sub	o-models	look like	this:						
\$1 Probit(y= 0	vs 123) = a(theta)	- diffic	ulty\$1)		CIA1					
\$2 Probit(y= 0	01 vs 23) = a(theta)	- diffic	ulty\$2)		CIA2 0.013					
\$3 Probit(y= 0	(12 vs 3) = a(theta)	- diffic	ulty\$3)		CIA3 0.012	0.017				
					CIA4 -0.010	-0.025 -0.03	6			
In requesting	predicted factor sco	ores usir	ng WLSM	V, their sample	CIA5 -0.030	-0.045 -0.06	7 0.032			
mean was -0.1	199 (not 0) and the s	sample v	ariance w	(as 0.538 (not 1)	CIA6 -0.040	-0.055 -0.02	5 0.026	0.035		
Whereas ML n	provided EAP (expo	ctod a no	ostoriori -	- mean) estimates	CIA7 -0.026	-0.007 0.01	6 0.022	-0.031	0.025	
		oleu a pl		- meany estimates,						
WLSMV provi	des MAP (maximum	i a poste	riori = mo	ode) estimates,	The largest co	prelation discrem	ancy is -	07 in abso	lute value v	which is
which are less	s stable with fewer i	tems. Us	se the ML	versions instead!		ather then felles	the above		m colling !	dana
					pretty good. R	kather than tollow	r me cnea	ι codes, I a	m calling it	uone.

PSQF 6249 Example 6a page 10 Extensive Results Section (in which model fit via WLSMV is reported first, followed by full-information MML as "better" version of model parameters). Note this is *way* more text than one would typically write, but I provide it here for completeness:

Psychometric assessment for the extent to which a single latent trait could predict that pattern of association among seven items was conducted using Item Factor Analysis (IFA) in *Mplus* v 8.8 (Muthén and Muthén, 1998–2017). These models use a cumulative link function (i.e., logit or probit) and a multinomial conditional response distribution, such that the four-category response outcomes (i.e., response *y* for item *i* and subject *s*) are predicting using three binary submodels: $Link[p(y_{is} > 0)] = -\tau_{i1} + \lambda_i F_s$, $Link[p(y_{is} > 1)] = -\tau_{i2} + \lambda_i F_s$, and $Link[p(y_{is} > 2)] = -\tau_{i2} + \lambda_i F_s$. In each model, τ_i is an item-specific and category-specific threshold. When multiplied by -1, it becomes an intercept that gives the link-transformed probability of the submodel's item response (for item *i* and subject *s*) at a latent trait score *F* for subject *s* of 0, and λ is a factor loading for item *i* for the expected change in the link-transformed response for a one-unit change in F_s . No separate item-specific residual variances can be estimated given these items' multinomial response options.

The current gold standard of estimation for such IFA models is marginal maximum likelihood (MML), in which the term marginal refers to the full-information process of marginalizing over the possible trait values for each person in the analysis using adaptive Gaussian guadrature (here, with 15 points per factor). Accordingly, measures of model fit when using MML involve the contingency table of all possible responses to all items. In our 7 items, the full contingency table generates up to 4⁷ = 16,384 possible cells. Consequently, no measures of absolute fit would be valid for the current sample of 634 respondents (which would need a minimum expected count of 5 respondents within each possible cell). Instead, we conducted assessment of model fit via a limited-information diagonally weighted least squares estimator using a mean- and variance-corrected χ^2 (i.e., WLSMV in Mplus with the THETA parameterization and a probit link function). In the WLSMV estimator, the item responses are first summarized into an estimated polychoric correlation matrix using the cross-tabulation of responses for each possible pair of items. The IFA models are then fitted to the estimated polychoric correlation matrix, such that measures of global and local absolute fit (i.e., as traditional in confirmatory factor analyses of continuous responses) can be computed from the discrepancy of the model-predicted and dataestimated polychoric correlation matrices. In addition to χ^2 tests of absolute fit, results also include the Comparative Fit Index (CFI), the Standardized Root Mean Square Residual (SRMR), and the Root Mean Square Error of Approximation (RMSEA). The CFI indexes the fit of the specified model relative to a null model (of no polychoric correlations across items), in which CFI values ≥ .95 traditionally indicate excellent fit. Conversely, the SRMR and RMSEA index the fit of the specified model relative to a saturated model (i.e., the data-estimated polychoric correlations), in which SRMR and RMSEA values < .06 traditionally indicate good fit. RMSEA also offers a 90% confidence interval and a significance test of "close fit" with a null hypothesis of .05. Local misfit can be diagnosed by examining the specific sources of discrepancy between the model-predicted and data-estimated polychoric correlations (i.e., as available using the RESIDUAL option in Mplus). Finally, the fit of nested models can be compared using the DIFFTEST procedure in Mplus.

A single-trait model was first fit for the seven ordinal items using WLSMV, in which the latent trait mean and variance were fixed for identification to 0 and 1, respectively, a separate factor loading was estimated for each item, and separate thresholds were estimated for each binary submodel per item. This model exhibited acceptable fit by CFI = .997 and SRMR = .021, but unacceptable fit by the χ^2 test of absolute fit, χ^2 (14) = 96.262, p < .001, and RMSEA = .096 [CI = .079–.115, p < .001]. However, examination of local misfit revealed all discrepancies between the model-predicted and data-estimated polychoric correlations were less than .07 in absolute value, indicating no practically significant bivariate item misfit. A reduced model in which all loadings were constrained equal across items fit significantly worse, DIFFTEST(6) = 93.825, p < .001, indicating differences in item discrimination (i.e., the extent to which each item was related to the latent trait). Thus, the original model was retained for further examination using full-information marginal maximum likelihood (MML) estimation instead.

Model parameters obtained using MML and a logit link are shown in Table 1, which includes the IFA item parameters (thresholds and loadings), as well as their Item Response Theory (IRT) analogous parameter of item difficulty, computed as $b_{ic} = \tau_{ic}/\lambda_i$; IRT discrimination a_i is the same as the loading λ_i in this case. The net result of these item parameters can be described more succinctly by examining the overall reliability with which the latent trait has been measured. In IFA or IRT models—as in any kind of psychometric model with a nonlinear relationship between the item response and the latent trait—reliability is trait-specific, most often characterized by a quantity known as *test information*. For ease of interpretation, the test information function created by the items was converted to a traditional measure of reliability that ranges from 0 to 1 as reliability = information / (information +1). Figure 1 shows that test reliability is ≥.80 only from ~2.6 SD below the mean to 0.40 SD above the mean, after which point reliability drops off precipitously due to a lack of items with difficulty levels above 0.

(See Example 6a spreadsheet for Table 1 and Figure 1)

Reference: Muthén, L. K., & Muthén, B.O. (1998–2017). Mplus user's guide (8th ed.). Los Angeles, CA: Muthén & Muthén.