This example comes from the Octogenarian Twin Study of Aging in Sweden. The current analysis includes 635 older adults (age 80–100 years) self-reporting on seven binary items assessing the Instrumental Activities of Daily Living (IADL). Note: I have also included R syntax in the online files, but the lavaan default of listwise deletion must be switched to pairwise deletion for the WLSMV results to match those of Mplus!

- 1. Housework (cleaning and laundry): 1=64%
- 2. Bedmaking: 1=84%
- 3. Cooking: 1=77%
- 4. Everyday shopping: 1=66%
- 5. Getting to places outside of walking distance: 1=65%
- 6. Handling banking and other business: 1=73%
- 7. Using the telephone $1=94\% \rightarrow$ **Instability!**

Two versions of a response format were available for these data:

Binary $\rightarrow 0$ = needs help, 1 = does not need help Categorical $\rightarrow 0$ = can't do it, 1 = big problems, 2 = some problems, 3 = no problems

Higher scores indicate greater function. We will examine each response format in turn.

Comparing Tetrachoric vs. Pearson Correlation Matrices for 7 Binary Item Responses

(see online files for code and output of saturated model that generated these correlations)

Tetrachoric Correlation Estimates								Pearson Correlation Estimates					
	DIA1	DIA2	DIA3	DIA4	DIA5	DIA6		DIA1	DIA2	DIA3	DIA4	DIA5	DIA6
DIA1							DIA1						
DIA2	.916						DIA2	.562					
DIA3	.921	.921					DIA3	.661	.692				
DIA4	.882	.873	.863				DIA4	.680	.555	.614			
DIA5	.837	.845	.771	.924			DIA5	.627	.533	.525	.747		
DIA6	.786	.790	.795	.888	.861		DIA6	.551	.529	.563	.666	.631	
DIA7	.679	.796	.805	.844	.755	.818	DIA7	.279	.438	.398	.341	.309	.379
	Tetrach	oric Cori	relation	Standar	d Errors			Pearson Correlation Standard Errors					
	DIA1	DIA2	DIA3	DIA4	DIA5	DIA6		DIA1	DIA2	DIA3	DIA4	DIA5	DIA6
DIA1							DIA1						
DIA2	.026						DIA2	.028					
DIA3	.020	.021					DIA3	.023	.021				
DIA4	.023	.030	.028				DIA4	.022	.028	.025			
DIA5	.028	.033	.037	.017			DIA5	.024	.029	.029	.018		
DIA6	.035	.039	.035	.023	.026		DIA6	.028	.029	.028	.022	.024	
DIA7	.078	.055	.056	.174	.066	.054	DIA7	.038	.033	.034	.036	.036	.034
	DIA4												
DIA 7	0	1											
0	.057	.000	Empty o	ell: Ever	yone wł	no could s	hop could	also ansv	wer the	ohone			
1	.290	.653											

Remember that the maximum possible Pearson correlation will be smaller than ± 1 for any two variables with means for the probability of $y=1 \neq .50$:

$$r_{x,y} = \sqrt{\frac{p_x(1 - p_y)}{p_y(1 - p_x)}}$$

Below is a review of where tetrachoric correlations come from (bivariate normal): what correlation would have created the proportion of responses in each quadrant?

Data	y ₂ = 0	y ₂ = 1
y ₁ = 0	а	с
y ₁ = 1	b	d

Mplus Syntax for Binary 2-PL Model Syntax (left) and 1-PL Model (right) using Full-Information ML and a Logit Link:

TITLE: Binary Models using Full-Info ML	TITLE: Binary Models using Full-Info ML						
DATA: FILE = Example5.csv; ! Don't need path if data in same folder FORMAT = free; ! Default TYPE = INDIVIDUAL; ! Default	DATA: FILE = Example5.csv; ! Don't need path if data in same folder FORMAT = free; ! Default TYPE = INDIVIDUAL; ! Default						
<pre>VARIABLE: NAMES = case dial-dia7;</pre>	<pre>VARIABLE: NAMES = case dial-dia7;</pre>						
ANALYSIS: TYPE = GENERAL; ! Default ESTIMATOR = ML; LINK = LOGIT; ! Full-info ML in logits CONVERGENCE = 0.0000001; ! For OS comparability	ANALYSIS: TYPE = GENERAL; ! Default ESTIMATOR = ML; LINK = LOGIT; ! Full-info ML in logits CONVERGENCE = 0.0000001; ! For OS comparability						
OUTPUT: STDYX; ! Standardized solution TECH10; ! Local misfit for full-info ML	OUTPUT: STDYX; ! Standardized solution TECH10; ! Local misfit for full-info ML						
SAVEDATA:SAVE = FSCORES;! Save factor scores (thetas)FILE = Thetas2P.dat;! File factor scores saved toMISSFLAG = 999999;! Missing data value in file	<pre>SAVEDATA: SAVE = FSCORES; ! Save factor scores (thetas) FILE = Thetas1P.dat; ! File factor scores saved to MISSFLAG = 999999; ! Missing data value in file</pre>						
PLOT:TYPE = PLOT1;! PLOT1 gets you sample descriptivesTYPE = PLOT2;! PLOT2 gets you the IRT-relevant curvesTYPE = PLOT3;! PLOT3 gets you descriptives for theta	PLOT:TYPE = PLOT1;! PLOT1 gets you sample descriptivesTYPE = PLOT2;! PLOT2 gets you the IRT-relevant curvesTYPE = PLOT3;! PLOT3 gets you descriptives for theta						
<pre>MODEL: Factor loadings all estimated in 2PL IADL BY dia1-dia7*; Item thresholds all estimated [dia1\$1-dia7\$1*]; Factor variance=1 and mean=0 for identification IADL@1; [IADL@0]; </pre>	<pre>MODEL: Factor loadings all held EQUAL in 1PL IADL BY dia1-dia7* (loading); Item thresholds all estimated [dia1\$1-dia7\$1*]; Factor variance=1 and mean=0 for identification IADL@1; [IADL@0]; </pre>						

Binary 2-Pameter Model Fit (left) and 1-Parameter Model Fit (right) using Full-Information ML and a Logit Link:

MODEL FIT INFORMATION - 2PL	MODEL FIT INFORMATION - 1 PL						
Number of Free Parameters 14	Number of Free Parameters 8						
Loglikelihood	Loglikelihood						
H0 Value -1454.634	H0 Value -1464.457						
Information Criteria	Information Criteria						
Akaike (AIC) 2937.268 Bayesian (BIC) 2999.619 Sample-Size Adjusted BIC 2955.170 (n* = (n + 2) / 24)	Akaike (AIC) 2944.915 Bayesian (BIC) 2980.544 Sample-Size Adjusted BIC 2955.144 (n* = (n + 2) / 24) 24						
Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes	Chi-Square Test of Model Fit for the Binary and Ordered Categorical (Ordinal) Outcomes**						
Pearson Chi-Square	Pearson Chi-Square						
Value340.829Degrees of Freedom113P-Value0.0000	Value296.199Degrees of Freedom118P-Value0.0000						
Likelihood Ratio Chi-Square	Likelihood Ratio Chi-Square						
Value120.273Degrees of Freedom113P-Value0.3023	Value126.354Degrees of Freedom118P-Value0.2828						
Linda Muthén (and others) have suggested that if these two χ^2 values don't match, they should not be used to assess model fit.	<pre>** Of the 630 cells in the latent class indicator table, 1 were deleted in the calculation of chi-square due to extreme values.</pre>						
Further, the possible total DF for the χ^2 is calculated based on # possible response patterns. Here, for 7 binary items: 2PL model: $2^7 = 128$ possible – 7 loadings – 7 thresholds – 1 = 113 1PL model: $2^7 = 128$ possible – 1 loading – 7 thresholds – 1 = 119	This error message indicates that these 2 sets of chi-squares for the 2-PL and 1-PL are not on the same scale because they are not based on the same data. So we can't compare the chi-squares to test the difference in model fit, but we can still compare LL values.						
However, the 1PL only has df=118 because of the deleted cell.							

Does the 2-PL fit better than the 1-PL?

 $-1454.634^{*}-2 = 2909.258$ -2LL difference = 19.946, df = 6, p = .0032-1464.457^{*}-2 = 2928.914 AIC (but not BIC) is smaller for 2PL, too

3 differently scaled 2-Parameter solutions from ML logit provided by Mplus—all provide the exact same model predictions!

UNSTANDARDT	ZED MODEL REST	JLTS (TFA	MODEL SC	LUTION)	(output from	same 2PL mod	del conti	nued)			
Two-Tailed											
	Estimate	SE	Est./S E	P-Value							
	DOCTINGUC	J.L.		- varac	IRT PARAMETE	RIZATION IN T	WO-PARAN	METER LOGI	STIC METRIC		
FACTOR LOADING	S = CHANGE IN LOG	GIT(Y=1) PE	R UNIT CHAN	GE IN THETA	WHERE THE LOO	GIT = DISCRIM	INATION*	(THETA - 1	DIFFICULTY)		
IADL BY		. ,									
DIA1	4.328	0.560	7.725	0.000	Item Discrimina	ations = SLOPE C	F ICC AT P	=.50 (diffic	ulty location)		
DIA2	4.978	0.808	6.159	0.000	IADL BY						
DIA3	4.323	0.570	7.579	0.000	DIA1	4.328	0.560	7.725	0.000		
DIA4	7.511	1.696	4.429	0.000	DIA2	4.978	0.808	6.159	0.000		
DIA5	4.248	0.527	8.062	0.000	DIA3	4.323	0.570	7.579	0.000		
DIA6	3.451	0.401	8.600	0.000	DIA4	7.511	1.696	4.429	0.000		
DIA7	3.283	0.601	5.467	0.000	DIA5	4.248	0.527	8.062	0.000		
					DIA6	3.451	0.401	8.600	0.000		
THRESHOLDS = EX	XPECTED LOGIT (Y=0) WHEN THE	TA IS 0		DTA7	3,283	0.601	5.467	0.000		
DTA1\$1	-1.629	0.295	-5.516	0.000							
DTA2\$1	-5.202	0.770	-6.754	0.000	Item Difficult	ies = LOCATION C	F ITEM ON	LATENT TRAIT	at P=.50. LOGI	ст=0	
DTA3\$1	-3.462	0.441	-7.842	0.000	DTA1\$1	-0.376	0.052	-7.298	0.000		
DTA4\$1	-3 120	0 744	-4 193	0.000	DTA2\$1	-1 045	0.065	-15 978	0.000		
DIA:91	-1 833	0.298	-6 158	0.000		-0.801	0.000	-13 562	0.000		
DIAJQI DIAGQ1	-2 442	0.200	-9 369	0.000		-0 415	0.035	_9 9/0	0.000		
DIAUQI DIA 7¢1	-5 962	0.252	-6 951	0.000		-0 432	0.047	-9 296	0.000		
DIA/QI	-5.902	0.000	-0.951	0.000	DIAJQI DIAG\$1	-0.432	0.052	-11 990	0.000		
					DIAGQI	-0.708	0.000	-11.009	0.000		
STDIX MODEL	RESULTS (STAN	NDARDIZED	D IFA MODE	L SOLUTION)	DIA/ŞI	-1.010	0.120	-14.404	0.000		
			T	wo-Tailed							
	Estimate	S.E.	Est./S.E.	P-Value							
					USING RESULTS	S FROM IFA MC	ОБГ (ГЕВ	T PANEL):			
FACTOR LOADING	S IN STANDARDIZED	METRIC =	loading*SD(Theta)/SD(Y)							
IADL BY					IFA model: Logi	t(y) = -threshol	d + loadin	g(Theta)			
DIAL	0.922	0.018	51.712	0.000	Threshold = $expe$	ected logit of (y=0) for s	omeone with	Theta=0	_	
DIA2	0.940	0.018	52.557	0.000	When *-1, thresh	hold becomes int	ercept: ex	pected logit	: for (y=1) inst	ead	
DIA3	0.922	0.018	50.622	0.000							
DIA4	0.972	0.012	80.380	0.000	Loading = regres	ssion of item lo	git on The	eta			
DIA5	0.920	0.018	52.291	0.000	= change	a in logit(y) fo	or a one-un	it change in	n Theta		
DIA6	0.885	0.022	39.729	0.000							
DIA7	0.875	0.037	23.380	0.000	IFA Models:						
					Logit (DIA1=1) =	= 1.629 + 4.328((Theta) 🔶	if Theta=0,	prob(y=1)= .83	6	
THRESHOLDS IN S	STANDARDIZED METR	RIC = thres	hold/SD(Y)		Logit (DIA7=1) =	= 5.962 + 3.283((Theta) 🔶	if Theta=0,	prob(y=1) = .99	7	
DIA1\$1	-0.347	0.048	-7.303	0.000							
DIA2\$1	-0.982	0.056	-17.409	0.000							
DIA3\$1	-0.739	0.051	-14.373	0.000							
DIA4\$1	-0.404	0.045	-8.928	0.000	UCTNC DECUT			דייואגר חיני			
DIA5\$1	-0.397	0.048	-8.348	0.000	USING RESULT	5 FROM IRI MC	DEL (RIG	AI PANEL)	•		
DIA6\$1	-0.626	0.050	-12.558	0.000				-			
DIA7\$1	-1.590	0.080	-19.949	0.000	IRT model: Logi	t(y=1) = a(theta)	- difficu	ilty)			
					a = discriminat	ion (rescaled sl	.ope) = loa	ding/1.7			
R-SQUARE = star	ndardized loading	r ²			b = difficulty	(location on lat	ent metric	:) = threshol	d/loading		
DIA1	0.851	0.033	25.856	0.000							
DIA2	0.883	0.034	26.278	0.000	IRT Models:						
DTA3	0.850	0.034	25.311	0.000	Logit (DIA1=1) =	= 4.328*(Theta -	-0.376))	if Theta=0,	prob(y=1)= .83	6	
DTA4	0.000 0 945	0 024	40 190	0.000	Logit (DIA7=1) =	= 3.283*(Theta -	-1.816))	if Theta=0,	prob(y=1)= .99	7	
DIAS	0.945	0.024	26 1/5	0.000			,	,			
DIAG	0.040	0.032	19 865	0.000							
DIAU	0.764	0.035	11 690	0.000							
DIAI	0.700	0.000	TT.020	0.000							

Here is another estimation approach: a 2P vs. a 1P for Binary Responses using WLSMV and a Probit Link (see the online syntax and output files for the corresponding lavaan version using pairwise deletion as in Mplus WLSMV)

TITLE: Binary Models using Limited-Info WLSMV	TITLE: Binary Models using Limited-Info WLSMV						
DATA: FILE = Example5.csv; ! Don't need path if data in same folder	DATA: FILE = Example5.csv; ! Don't need path if data in same folder						
VARIABLE: NAMES = case dial-dia7; ! All vars in data	VARIABLE: NAMES = case dial-dia7; ! All vars in data						
USEVARIABLES = dial-dia7; ! All vars in model	USEVARIABLES = dial-dia7; ! All vars in model						
CATEGORICAL = dial-dia7; ! All ordinal outcomes	CATEGORICAL = dial-dia7; ! All ordinal outcomes						
MISSING = ALL (99999); ! Missing value code	MISSING = ALL (99999); Missing value code						
IDVARIABLE = case; ! Person ID variable	IDVARIABLE = case; ! Person ID variable						
ANALYSIS: ESTIMATOR = WLSMV; ! Limited-info in probits PARAMETERIZATION = THETA; ! Error vars=1 scaling	ANALYSIS: ESTIMATOR = WLSMV; ! Limited-info in probits PARAMETERIZATION = THETA; ! Error vars=1 scaling						
CONVERGENCE = 0.0000001; ! For OS comparability	CONVERGENCE = 0.0000001; ! For OS comparability DIFFTEST=2P.dat; ! Use saved info from bigger model						
OUTPUT: STDYX RESIDUAL; ! Standardized solution, local misfit	OUTPUT: STDYX RESIDUAL; ! Standardized solution, local misfit						
PLOT: TYPE = PLOT1 PLOT2 PLOT3; ! Get all IRT plots	PLOT: TYPE = PLOT1 PLOT2 PLOT3; ! Get all IRT plots						
SAVEDATA: DIFFTEST=2P.dat; ! Save info from bigger model							
NODEL:	NUDEL:						
TADI. BY dial-dia7*.	TADL BY dial-dia7* (loading)						
I Item thresholds all estimated	I Item thresholds all estimated						
[dia1\$1-dia7\$1*1;	[dial\$1-dia7\$1*]:						
! Item error variances fixed at 1 for identification	! Item error variances fixed at 1 for identification						
dial-dia7@1;	dial-dia7@1;						
! Factor variance=1 and mean=0 for identification	! Factor variance=1 and mean=0 for identification						
IADL@1; [IADL@0];	IADL@1; [IADL@0];						
MUDEL FIT INFORMATION 14	NUMBER of Erec Parameters						
Chi-Square Test of Model Fit	Chi-Smare Test of Model Fit						
Value 54.820*	Value 64.889*						
Degrees of Freedom 14	Degrees of Freedom 20						
P-Value 0.0000	P-Value 0.0000						
* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV							
cannot be used for chi-square difference testing in the regular way.	Chi-Square Test for Difference Testing						
MLM, MLR and WLSM chi-square difference testing is described on the	Value 17.874						
Mplus website. MLMV, WLSMV, and ULSMV difference testing is done	Degrees of Freedom 6						
using the DIFFTEST option.	P-value 0.0066						
RMSEA (Root Mean Square Error Of Approximation)	RMSEA (Root Mean Square Error Of Approximation)						
Estimate 0.068	Estimate 0.059						
90 Percent C.I. 0.049 0.087	90 Percent C.I. 0.044 0.076						
Probability RMSEA <= .05 0.055	Probability RMSEA <= .05 0.154						
CFI/TLI	CFI/TLI						
CFI 0.997	CFI 0.996						
TLI 0.995	TLI 0.996						
Chi-Square Test of Model Fit for the Baseline Model	SRMR (Standardized Root Mean Square Residual)						
Value 12351.798	Value 0.056						
Degrees of Freedom 21	The Chi-Square for Difference Testing tells us directly that the						
P-Value U.UUUU	2P version of the binary model fits significantly better than 1P						
SKMK (Stanuaruized Koot Mean Square Kesidual)	(now using W/LSMV, but some results as when using ML)						
Value 0.037	\perp (now using weblink, but same results as when using ML).						

Here are the parameter estimates under WLSMV Theta Parameterization (Probit) for the 2P model for binary items

UNSTANDARDIZ	ED MODEL RESUL	TS (IF	A MODEL S	OLUTION)		(outp	ut from	same 2	P model	conti	nued)		
				Two-Tailed		(,		
	Estimate	S.E.	Est./S.E.	P-Value									
	2002110000	0.2.	2001/0121	1 14140		IRT P	ARAMETE	RIZATIO	N IN TW	VO-PARAI	METER PR	KOBIT ME	FRIC
FACTOR LOADINGS	= CHANGE IN PROBI	T(Y=1)	PER UNIT CH	ANGE IN THET	A	WHERE	THE PR	OBIT IS	DISCRI	MINATI	ON* (THEI	'A -	
IADL BY		. ,				DIFFI	CULTY)						
DIA1	2.686	0.317	8.461	0.000									
DIA2	2.937	0.491	5.979	0.000		Item D	iscrimina	tions					
DIA3	2.806	0.386	7.274	0.000		IADL	BY						
DIA4	3.659	0.577	6.338	0.000		DI	A1	2	2.686	0.317	8.461	0.0	00
DIA5	2.485	0.294	8.457	0.000		DI	A2	2	2.937	0.491	5.979	0.0	00
DIA6	1.990	0.223	8.943	0.000		DI	A3	2	2.806	0.386	7.274	0.0	00
DIA7	1.570	0.299	5.250	0.000		DI	A4	3	3.659	0.577	6.338	3 0.0	00
						DI	A5	2	2.485	0.294	8.457	0.0	00
THRESHOLDS = EX	PECTED PROBIT (Y=0)	WHEN 1	HETA IS 0			DI	A6	1	1.990	0.223	8.943	3 0.0	00
DIA1\$1	-1.004	0.179	-5.607	0.000		DI	A7	1	1.570	0.299	5.250	0.0	00
DIA2\$1	-3.093	0.479	-6.458	0.000		Item D	ifficulti	es					
DIA3\$1	-2.224	0.308	-7.227	0.000		DI	A1\$1	-0	0.374	0.055	-6.743	3 0.0	00
DTA4\$1	-1.584	0.299	-5.303	0.000		DT	A2\$1	-1	1.053	0.069	-15.358	3 0.0	0.0
DTA5\$1	-1.057	0.174	-6.073	0.000		DT	A3\$1	- ().793	0.062	-12.867	7 0.0	0.0
DTA6\$1	-1.390	0.166	-8.360	0.000		DT	A4\$1	- ().433	0.054	-7.982	2.0	00
DTA7\$1	-2.944	0.397	-7.409	0.000		DT	A5\$1	- (). 425	0.056	-7.606	5 0.0	00
2111/41	2.911	0.007		0.000		DT	A6\$1	- (0.699	0.063	-11.084	0.0	00
STDYX MODEL	RESILTS (STAND)		ת איד חי	ET. SOLUTTO	NN)	DT	A7\$1	-1	1.875	0.154	-12.188	3 0.0	00
SIDIX MODEL	MBOLID (DIMD				Caple								
	Fatimata	0 5	Eat /C E	IWO-IALIEU	Factors	Logit	= 1.7*pro	bit. or E	Probit =	Logit/1.	7		
	Escimace	J.E.	ESU./S.E.	r-varue	FACLOIS			/ -					
FACTOR LOADINGS	TN STANDARDIZED M	ETRIC =	loading*SD	(Theta)/SD(V	n n	IFA mo	del: PROB	$\operatorname{SIT}(\mathbf{y}) = -$	-threshol	d + load:	ing (Theta)		
TADI. BY			rouaring 55	(1110000) / 02 (1	,	Thresh	old = exp	ected pro	bit of (y=0) for	someone w	ith Theta	=0
DTA1	0 937	0 013	69 490	0 000		When *	-1, thres	hold 🕇 i	ntercept	: expecte	d probit	for (y=1)	instead
DTA2	0 947	0.016	57 546	0 000		Loadin	a = reare	ssion of	item pro	bit on Tl	heta		
	0 942	0.015	64 560	0 000					-				
DIAG	0.942	0.011	91 204	0.000									
DIAS	0.903	0.015	60 668	0.000		IRT mo	del: Prob	it(v=1) =	= a(theta	- diffi	culty)		
DIAG	0.920	0.010	44 369	0.000		a = di	scriminat	ion (resc	caled slo	pe) = loa	ading/1		
	0.843	0.020	18 191	0.000		b = di	fficulty	(location	n on late	nt metric	c) = thres	shold/load	ing
DIRI	0.045	0.040	10.171	0.000				,			-,		9
Thresholds IN	STANDARDIZED METRI	C = +hr	eshold/SD(V)										
	-0 350	0 052	-6 790	0 000		LOCAL	. FTT VT	A RESTD	UALS FO	DR CORRI	ELATION		
DTA2\$1	-0.997	0.052	-16 472	0.000		TREE							
DIAZGI	-0 746	0.001	-13 331	0.000		LEFTO	VER TET	RACHORI	C CORRE	LATION	(HOW FA	R OFF M	DET
DTA4\$1	-0 417	0.052	-8 041	0.000		PREDI	CTIONS	ARE FRO	M ESTIM	IATED D	ATA CORF	ELATION	5)
DTA5\$1	-0 395	0.051	-7 674	0.000									
DIAGSI	-0.624	0.051	-11 647	0.000									
DIA091 DIA701	-1 592	0.004	-10 624	0.000		Residu	als for C	ovariance	es/Correl	ations/Re	esidual Co	orrelation	s
DIAIQI	-1.582	0.001	-19.024	0.000			DIA1	DIA2	DIA3	DIA4	DIA5	DIA6	
P-SOUAPE - stan	dardized loading ²												
	0 878	0 025	34 745	0 000	0 349	DIA1							
DIN 2	0.070	0.020	28 773	0 000	0.323	DIA2	0.029						
DIAZ	0.090	0.031	20.113	0.000	0.322	DIA3	0.038	0.029					
DIAJ	0.007		15 602	0.000	0.330	DIA4	-0.022	-0.040	-0.046				
DIAS	0.951	0.020	30 334	0.000	0.204	DIA5	-0.032	-0.033	-0.103	0.029			
DIAG	0 798	0.020	22 185	0 000	0.249	DIA6	-0.052	-0.056	-0.046	0.026	0.032		
DTA7	0 711	0.078	9 095	0 000	0 537	DIA7	-0.111	-0.002	0.010	0.031	-0.027	0.064	
	· · /	0.070	2.020	0.000									

Extensive Results Section (in which model fit via WLSMV is reported first, followed by full-information MML as "better" version of the model parameters). Note this is *way* more text than one would typically write, but I provide it here for completeness:

PSQF6249 Example 5 page 9

Psychometric assessment for the extent to which a single latent trait could predict that associations among seven binary items measuring physical capacity was conducted using Item Factor Analysis (IFA) in Mplus v 8.8 (Muthén and Muthén, 1998–2017). These models use a link function (i.e., logit or probit) and a conditional Bernoulli response distribution to predict the conditional probability of a response = 1 (instead of 0) from a linear model as $Link(y_{is} = 1) = -\tau_i + \lambda_i F_s$. In this item model, $-\tau_i$ is the item-specific threshold, which when multiplied by -1 becomes an intercept that gives the link-transformed probability of response $y_{is} = 1$ (for item *i* and subject *s*) at a latent trait score *F* for subject *s* of 0, and λ_i is an item-specific factor loading for the expected change in the link-transformed response for a one-unit change in F_s . No separate item-specific residual variances can be estimated given these items' binary response formats.

The current gold standard of estimation for IFA models is marginal maximum likelihood (MML), in which the term marginal refers to the full-information process of marginalizing over all possible trait values for each person in the analysis using adaptive Gaussian guadrature with 15 guadrature points per latent trait. Accordingly, measures of model fit when using MML involve the contingency table of all possible responses to all items. In our 7 items, the full contingency table generates up to 27 = 128 possible cells. Consequently, no measures of absolute fit would be valid for the current sample of 635 respondents (which would need a minimum expected count of 5 respondents within each possible cell). Instead, we conducted assessment of model fit via a limited-information diagonally weighted least squares estimator using a mean- and variance-corrected χ^2 (i.e., WLSMV in Mplus with the THETA parameterization and a probit link function). In the WLSMV estimator, the item responses are first summarized into an estimated tetrachoric correlation matrix using the cross-tabulation of responses for each possible pair of items. The IFA models are then fitted to the estimated tetrachoric correlation matrix, such that traditional measures of global and local absolute fit (i.e., traditional in confirmatory factor analyses of continuous responses) can be computed by comparing the model-predicted and data-estimated tetrachoric correlation matrices. In addition to χ^2 tests of absolute fit, WLSMV also provides the Comparative Fit Index (CFI), the Standardized Root Mean Square Residual (SRMR), and the Root Mean Square Error of Approximation (RMSEA). The CFI indexes the fit of the specified model relative to a null model (of no tetrachoric correlations across items), in which CFI values ≥ .95 traditionally indicate excellent fit. Conversely, the SRMR and RMSEA index the fit of the specified model relative to a saturated model (i.e., the data-estimated tetrachoric correlations), in which SRMR and RMSEA values ≤ .06 traditionally indicate excellent fit. RMSEA also offers a 90% confidence interval and a significance test of "close fit" with a null hypothesis of .05. Local misfit can be diagnosed by examining the specific sources of discrepancy between the model-predicted and data-estimated tetrachoric correlations (i.e., as available using the RESIDUAL option in Mplus). Finally, the fit of nested models can be compared using the DIFFTEST procedure in Mplus.

A single-trait model was first estimated for the 7 binary items using WLSMV, in which the latent trait mean and variance were fixed for identification to 0 and 1, respectively, and separate thresholds and factor loadings were estimated for each item. This model exhibited acceptable fit by every measure except the χ^2 test of absolute fit, χ^2 (14) = 54.820, p < .001, CFI = .997, SRMR = .037, RMSEA = .068 [CI = .049–.087, p = .055]. Examination of local misfit revealed all discrepancies between the model-predicted and data-estimated tetrachoric correlations were less than .113 in absolute value, indicating no practically significant bivariate item misfit. A reduced model in which all loadings were constrained equal across items fit significantly worse, DIFFTEST(6) = 17.874, p = .007, indicating differences in item discrimination (i.e., the extent to which each item was related to the latent trait). Thus, the original model was retained for further examination using full-information marginal maximum likelihood (MML) estimation instead (given the presence of missing item-level responses).

Model parameters obtained using MML and a logit link are shown in Table 1, which includes the IFA item parameters (thresholds and loadings), as well as their Item Response Theory (IRT) analogous parameter of item difficulty, computed as $b_i = \tau_i/\lambda_i$; IRT discrimination a_i is the same as the loading λ_i in this case. The net result of these item parameters can be described more succinctly by examining the overall reliability with which the latent trait has been measured. In IFA or IRT models—as in any kind of psychometric model with a nonlinear relationship between the item response and the latent trait—reliability is trait-specific, most often characterized by a quantity known as *test information*. For ease of interpretation, the test information function created by the items was converted to a traditional measure of reliability that ranges from 0 to 1 as reliability = information / (information +1). Figure 1 shows that test reliability is ≥.80 only from ~1.8 SD below the mean to 0.20 SD above the mean, after which point reliability drops off precipitously due to a lack of items with difficulty levels above 0.

(See Example 5 spreadsheet for Table 1 and Figure 1)

Reference: Muthén, L. K., & Muthén, B.O. (1998–2017). Mplus user's guide (8th ed.). Los Angeles, CA: Muthén & Muthén.