
The Finale: Path Analysis and 

Structural Equation Modeling

(SEM)
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• Topics:

➢ Path analysis (i.e., path modeling): 

▪ Vocabulary and rules for predictions 

▪ Assessing model fit and testing mediation

➢ The Big Picture of SEM

➢ What to do (and what NOT to do) if SEM breaks for you

▪ Parceling indicators

▪ Using single indicators (sum or factor scores)

▪ Multiple plausible values of factor scores



Path Analysis versus SEM
• Path analysis (i.e., path models) are multivariate models that include 

observed variables only, whereas SEM also includes latent variables 

• The vast, vast majority of textbooks and resources for path analysis 
and SEM focus on the multivariate general linear model case

➢ Using an identity link function and conditional multivariate normal 
distribution (MVN) in which all outcomes have estimated residual 
variances (and fixed effects that predict their conditional means)

➢ Many software packages available: SAS PROC CALIS, STATA SEM 
and GSEM, Mplus, Lavaan in R, LISREL, EQS, AMOS (part of SPSS)

▪ None use denominator degrees of freedom (give 𝑧 and 𝜒2 Wald tests)

➢ For path analysis examples with normal residuals using Mplus and STATA, 
see Part 2 of Examples 4b and 5a; Mediation in Example 6a in this class

• Software for path analysis and SEM with non-normal outcomes 
is harder to find and may have more complexity in estimation

➢ STATA GSEM, Mplus, Lavaan in R (categorical outcomes only with WLSMV)

➢ For a mediation path model with binary outcomes, see Example 6b in this class

➢ Once you know how to build latent variables (for any kind of indicators), 
the transition from path analysis to SEM is very straightforward…

▪ So let’s start with an overview of path models and then extend into SEM…
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Path Models: Pictures and Equations
• What are path models? “Truly” multivariate models for predicting 

2+ outcomes simultaneously for the same unit of analysis

• Models most often expressed as a diagram using these conventions:

➢ Boxes = observed variables; circles = latent variables (in SEM) or residuals

➢ One-headed arrow = regression (arrow points from predictor to outcome)

➢ Two-headed arrow = (residual) covariance; intercepts sometimes via triangle

3

The idea of residual variable is 

either expressed using a separate 

circle (e.g., for 𝑦1) or a two-headed 

arrow into itself (e.g., for 𝑦2).

Diagram translates into these simultaneous 

regression models (in which superscripts 

denote the outcome of each parameter):

𝑦1𝑖 = 𝜷𝟎
𝒚𝟏
+ 𝜷𝒙𝟏

𝒚𝟏
𝑥1𝑖 + 𝜷𝒙𝟐

𝒚𝟏
𝑥2𝑖 + 𝒆𝒊

𝒚𝟏

𝑦2𝑖 = 𝜷𝟎
𝒚𝟐
+ 𝜷𝒙𝟏

𝒚𝟐
𝑥1𝑖 + 𝜷𝒙𝟐

𝒚𝟐
𝑥2𝑖 + 𝒆𝒊

𝒚𝟐

𝝈𝒆𝒚𝟏
𝟐 𝝈𝟏𝟐

𝝈𝟏𝟐 𝝈𝒆𝒚𝟐
𝟐

Unstructured R matrix 

for outcome residual 

variances and covariance(s):

𝑥1

𝑦2

𝑦1

𝑥2

𝑒𝑦1

𝝈𝒚𝟏,𝒚𝟐

𝝈𝒆
𝟐
𝒚𝟐

𝝈𝒆
𝟐
𝒚𝟏

𝜷𝒙𝟏
𝒚𝟏

𝜷𝒙𝟐
𝒚𝟐

𝜷𝒙𝟏
𝒚𝟐

𝜷𝒙𝟐
𝒚𝟏

𝟏
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Multivariate Regression via Path Models
• This example is really just two 

univariate regression models 
estimated simultaneously

➢ Each 𝜷𝒙𝟏 and 𝜷𝒙𝟐 provide the unique 
effects of 𝑥1 and 𝑥2 for 𝑦1 and 𝑦2
outcomes (same as in regression)

➢ Can calculate 𝑅2 for each outcome

➢ Mplus code under MODEL:

▪ y1 y2 ON x1 x2; y1 WITH y2;

• So why do both models at once?

➢ To test differences in effect size 

(e.g., does 𝜷𝒙𝟏
𝒚𝟏

= 𝜷𝒙𝟏
𝒚𝟐

?)

➢ To test mediation and indirect effects, 
in which a variable is both a predictor 
and an outcome in the same analysis 
(stay tuned)
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If these variables came from 

a dyad of two persons (1 and 

2), this could be an example 

of an “actor–partner model”

➢ Arrows within same person 

= “actor effects”

➢ Arrows across different people 

= “partner effects” 

𝑥1

𝑦2

𝑦1

𝑥2

𝑒𝑦1

𝝈𝒚𝟏,𝒚𝟐

𝝈𝒆
𝟐
𝒚𝟐

𝝈𝒆
𝟐
𝒚𝟏

𝜷𝒙𝟏
𝒚𝟏

𝜷𝒙𝟐
𝒚𝟐

𝜷𝒙𝟏
𝒚𝟐

𝜷𝒙𝟐
𝒚𝟏
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2 Types of Path Model Solutions
• Unstandardized → predicts scale-sensitive original variables:

➢ Regression Model:  𝑦1𝑖 = 𝜷𝟎
𝒚𝟏
+ 𝜷𝒙𝟏

𝒚𝟏
𝑥1𝑖 + 𝜷𝒙𝟐

𝒚𝟏
𝑥2𝑖 + 𝒆𝒊

𝒚𝟏

➢ Useful for comparing across groups (whenever absolute values matter)

➢ Parameters predict the variables’ means, variances, and covariances

➢ Variance of 𝒚𝟏 = [variance explained by predictor fixed effects] + 𝝈𝒆
𝟐
𝒚𝟏

• Standardized → predicts 𝑧-scored versions of variables:

➢ Useful when comparing effects within a solution (are then on same scale)

➢ Model parameters predict the variables’ correlations

➢ Standardized slope = [𝜷𝒙𝟏
𝒚𝟏
∗ 𝑺𝑫(𝒙𝟏)] / 𝑺𝑫(𝒚𝟏) = unique correlation

➢ 𝑹𝟐 for 𝒚𝟏 = 𝟏 − standardized 𝝈𝒆
𝟐
𝒚𝟏

➢ Standardized solutions are usually only reported for path models with 

conditionally multivariate normal residuals (with estimated variances)
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New (and Confusing) Terminology
• Predictors are known as exogenous variables (X-ogenous to me)

• Outcomes are known as endogenous variables (IN-dogenous to me)

• Variables that are both at once are called endogenous variables
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Our previous example model: 

2 exogenous variables (𝑥1 and 𝑥2)

2 endogenous variables (𝑦1 and 𝑦2)

𝑥1

𝑦2

𝑦1

𝑥2

𝑒𝑦1

𝝈𝟏𝟐

𝝈𝒆
𝟐
𝒚𝟐

𝝈𝒆
𝟐
𝒚𝟏

𝜷𝒙𝟏
𝒚𝟏

𝜷𝒙𝟐
𝒚𝟐

𝜷𝒙𝟏
𝒚𝟐

𝜷𝒙𝟐
𝒚𝟏

Our modified example model: 

𝑦1 predicts 𝑦2 (still endogenous)
𝑥1

𝑦2

𝑦1

𝑥2

𝑒𝑦1

𝝈𝒆
𝟐
𝒚𝟐

𝝈𝒆
𝟐
𝒚𝟏

𝜷𝒙𝟏
𝒚𝟏

𝜷𝒙𝟐
𝒚𝟐

𝜷𝒙𝟏
𝒚𝟐

𝜷𝒙𝟐
𝒚𝟏

𝜷𝒚𝟏
𝒚𝟐

𝑦1𝑖 = 𝜷𝟎
𝒚𝟏
+ 𝜷𝒙𝟏

𝒚𝟏
𝑥1𝑖 + 𝜷𝒙𝟐

𝒚𝟏
𝑥2𝑖 + 𝒆𝒊

𝒚𝟏

𝑦2𝑖 = 𝜷𝟎
𝒚𝟐
+ 𝜷𝒙𝟏

𝒚𝟐
𝑥1𝑖 + 𝜷𝒙𝟐

𝒚𝟐
𝑥2𝑖 + 𝒆𝒊

𝒚𝟐

𝑦1𝑖 = 𝜷𝟎
𝒚𝟏
+ 𝜷𝒙𝟏

𝒚𝟏
𝑥1𝑖 + 𝜷𝒙𝟐

𝒚𝟏
𝑥2𝑖 + 𝒆𝒊

𝒚𝟏

𝑦2𝑖 = 𝜷𝟎
𝒚𝟐
+ 𝜷𝒙𝟏

𝒚𝟐
𝑥1𝑖 + 𝜷𝒙𝟐

𝒚𝟐
𝑥2𝑖

+𝜷𝒚𝟏
𝒚𝟐

𝑦1𝑖 + 𝒆𝒊
𝒚𝟐

𝟏

𝟏
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New Mplus code under MODEL:
y1 y2 ON x1 x2; y2 ON y1;



New (and Confusing) Terminology
• What parameters get estimated for exogenous “predictor” and 

endogenous “outcome” variables differs importantly by program!

➢ Only the intercepts, residual variances, and residual covariances 

of “outcome” variables are estimated as part of the likelihood…

➢ But what each program considers an “outcome” depends on estimation!

• By default in Mplus, *truly* exogenous predictor variables cannot 

have missing data, the same as in any general(ized) linear model

➢ Cases with missing predictors are listwise deleted (incomplete data then 

are assumed missing completely at random), no matter which estimator!

➢ Because *truly* exogenous predictors are not part of likelihood function 

▪ Log-likelihood (LL) contains ෝ𝒚𝒊 for each person and 𝝈𝒆
𝟐 for each outcome 

▪ So LL can’t be calculated without the predictors that create each ෝ𝒚𝒊

➢ But truly exogenous predictors also do not have assumed distributions…

▪ Good when you have non-normally-distributed predictors (e.g., ANOVA)!
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“Predictors” as Endogenous Outcomes
• What??? I thought full-information ML allows missing data???

➢ NO: only endogenous outcomes can be incomplete (then assumed missing 
at random, which means random only after conditioning on model variables)

➢ Btw, you can add other variables into the likelihood but not the model to 
help (untestable) missing at random assumption using AUXILIARY option

▪ Is a “saturated correlates” approach (they just covary with all outcomes)  

• Mplus allows a work-around: you *can* bring exogenous 
predictors into the likelihood by listing their means, variances, or 
covariances as parameters → predictors then become “outcomes”

➢ Even if nothing predicts the predictor (i.e., it’s not really an outcome)

➢ Incomplete “endogenous predictors” can be included assuming missing 
at random (MAR), but they also then have distributional assumptions (MNV)

▪ Historically Mplus has not let endogenous predictors have other distributions, 
so you may have to make non-normal predictors an outcome of something else

▪ But there may be ways to trick it in doing this that I haven’t found yet…
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“Predictors” as Endogenous Outcomes
• SAS CALIS and STATA SEM both default to limited-info ML (uses listwise 

deletion and assumes MNV for ALL variables), but both can do full-info ML

➢ SAS CALIS: full-info via “FIML” or robust version “MLMB” (I think it’s full-info)

▪ Can add variables into the likelihood but not the model (as “saturated correlates”) using the 
AUXILIARY option to help (untestable) missing at random assumption

➢ STATA SEM: full-info via “MLMV”;  can add “robust” SEs to mimic robust ML 

▪ No syntax to set up saturated correlates as AUXILIARY variables directly (I think)

• But using full-info ML FORCES the exogenous predictors into the 
likelihood—they are treated as endogenous outcomes whose means, 
variances, and covariances are estimated as model parameters

➢ So incomplete endogenous predictors can then be included assuming missing
at random (MAR), but they also then have distributional assumptions (MNV)

➢ STATA SEM “xconditional” default computes predictor means, variances, and 
covariances from the data to save time if complete data (or searches for them 
with “noxconditional” option, which it invokes on its own when needed)

➢ What happens for generalized path models in STATA GSEM? Stay tuned…
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Reconciling Confusing Vocabulary
• As we’ve seen, the distinction of “predictor” and “outcome” 

is no longer as clear-cut as in general(ized) linear models

➢ Because in path models a variable can be both a predictor 
and an outcome at the same time! In that case, it’s an outcome

• Likewise, the distinction of “exogenous” from “endogenous” 
(as traditionally used in path models) is not really clear-cut

➢ In theory, predictors are exogenous and outcomes are endogenous…

➢ …But that depends on what your software is doing!

• New, more comprehensive rule: Is a variable in the likelihood?

➢ YES, if its means, variances, or covariances are model parameters

➢ YES, if it’s only a predictor but you are using SAS CALIS or STATA SEM

➢ IF YES, then I will call it an “outcome”: incomplete cases can then be included 
(with missing data assumed missing at random), but this flexibility comes at 
the (potential) cost of assuming a multivariate normal conditional distribution

➢ IF NO, then I will call it a “predictor”: it’s not in the likelihood, so cases with 
incomplete predictors will be dropped, but then no distribution is assumed
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Model Identification and Model Fit
• “Model identification” in path models* refers to 

estimability and whether the model has spent all 
possible degrees of freedom (DF)

➢ *It also includes the scaling of latent variables in SEM
(each latent factor must have a mean and a variance)

• Need to know Total DF = possible and Model DF = remaining

➢ In models in which all variables are in the likelihood as outcomes, 

total DF = 
𝒗 𝒗+𝟏

𝟐
+ 𝒗 where 𝒗 is the # outcomes (NOT people, like usual)

▪ Total DF = number of outcome means, variances, and covariances

▪ e.g., if 𝑣 = 4 outcomes, then 𝐷𝐹 =
4 5+1

2
+ 4 = 14

▪ For truly exogenous predictors, their means, variances, and covariances among 
them do NOT count towards total DF, but the covariances of those predictors 
with the outcomes DO count towards total DF (so not an easy-to-use formula)

– In practice it’s still ok to just use 𝑣 = # outcomes + # predictors (stay tuned)

➢ Model DF = data input − model output

➢ Model DF = # possible parameters − # estimated parameters
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What Goes In     What Comes Out
(data used as input)     (estimated parameters)

• Observed mean

per outcome

• Observed variance

per outcome

• Estimated intercept per outcome 

(to perfectly re-create the observed 

outcome means)

• Estimated residual variance per 

outcome (to perfectly re-create the 

observed outcome variances)

12

• Note of terminology: if the “outcome” is not actually being predicted, 

then the output labels switch from conditional to unconditional:

➢ For a predictor in the likelihood, model estimates its “mean” instead of 

its “intercept” and its “variance” instead of its “residual variance”

➢ For truly exogenous predictors, their means and variances are not potential 

model parameters, so we can ignore them (as in regular regression models)

• Bottom line: model misfit does not come from means or variances 

(UNLESS constraints on them are used to reduce the number estimated)
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What Goes In     What Comes Out
(data used as input)     (estimated parameters)

• Observed covariance

between each pair of 

outcomes

• Observed covariance

of each predictor with 

each outcome 

• Estimated regression path or residual 

covariance between each pair of 

outcomes (to predict covariance)

• Estimated regression path or residual 

covariance of each predictor with each 

outcome (to predict covariance)

13

• Note of terminology: if the “outcome” is not actually being predicted, 

then the output labels switch from conditional to unconditional:

➢ For a predictor in the likelihood, model estimates its “covariance” 

instead of its “residual covariance” with other variables

➢ For truly exogenous predictors, the covariances among them are not potential 

model parameters, so we can ignore them (as in regular regression models)

• If some sources of direct covariance are omitted, then observed 

covariances will not be perfectly reproduced → room for model misfit
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Labeling Model Identification Scenarios
• Two things to know: 

➢ Is the model estimable—can all parameters be found? (no redundancy) 

➢ Is the absolute model fit testable—can we determine if the parameters 
used adequately re-create the (outcome) means, variances, and covariances?

➢ Comes from Model DF = # possible parameters − # estimated parameters

• 3 possible model identification scenarios:

➢ Under-identified: # possible < # estimated→ negative Model DF

▪ Model is not solvable (parameter estimates cannot be found); game over

➢ Just-identified: # possible = # estimated → 0 Model DF

▪ Model is solvable (is most common scenario; perfectly reproduces original data)

▪ Absolute model fit will NOT be relevant (which is good for path models)

➢ Over-identified: # possible > # estimated → positive Model DF

▪ Model is still solvable (and is more parsimonious description of original data 
because some possible direct relationships have been “overlooked”)

▪ Absolute model fit is then necessary before interpreting model results 
(generally more of an issue for latent variable measurement models in SEM)
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• Over-identified: have positive DF leftover (possible>estimated)

• Just-identified: have 0 df leftover (possible = estimated)

• Under-identified: have negative DF (possible < estimated)

Path Model Identification Examples
(in which each variable is in the likelihood and has a perfectly 

accounted for mean/intercept and variance/residual variance)

15

x1 y2y1

x1 y2y1

x1 y2y1

Left two models all have equivalent fit with 

DF=1 (for the 1 missing direct relationship)

These 3 models all have equivalent fit with 

DF=0 (for 0 missing direct relationships)

x1 y2y1

x1 y2y1

x1 y2y1

y2y1
This model is trying to estimate 2 paths 

using only 1 covariance (can’t be solved)
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Right: also DF=1, but predicts 

no correlation of 𝑥1 with 𝑦2



Path Model Code in Mplus

16

By including the covariances between 

the A, B, and C predictors, this diagram 

indicates they are in the likelihood. 

This means that they can have missing 

data (under an assumption of missing at 

random), but they are also assumed to 

have a multivariate normal distribution.
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! Required code to estimate regression paths

D ON A B;

E ON D C;

F ON E;

! Outcome intercepts and residual variances estimated by default

[D E F]; D E F;

! To bring A, B, and C predictors into the likelihood,

! Request their covariances

A B C WITH A B C;

! Predictor means and variances then estimated by default

[A B C]; A B C;  



Wright’s Rules of Tracing for Path Analysis

• Total correlations between variables can result from more than one path

with these rules: no loops (can’t pass through same variable twice), no 

going forward then backward (common causes, not common outcomes), 

and only one curved arrow (covariance) is allowed from first to last variable

17

These rules below use correlations for 

convenience, but for covariances, the 

variance of a predictor variable that 

originates the path (or at any change in 

directions of directed arrows) gets 

included as a multiplier of the path:

Cov B to D: 𝝈𝑩
𝟐 𝒃 + 𝒇𝒂

➢ Correct B to D: 𝑟𝐵𝐷 = 𝑏 + 𝑓𝑎

➢ Correct C to D: 𝑟𝐶𝐷 = 𝑔𝑏 + ℎ𝑎

➢ Correct A to E: 𝑟𝐴𝐸 = 𝑎𝑑 + 𝑓𝑏𝑑 + ℎ𝑐

➢ Correct A to F: 𝑟𝐴𝐹 = 𝑎𝑑𝑒 + 𝑓𝑏𝑑𝑒 + ℎ𝑐𝑒

➢ Wrong A to B: 𝑟𝐴𝐵 ≠ 𝑎𝑏𝑓

➢ Wrong C to D: 𝑟𝐶𝐷 ≠ 𝑐𝑑

➢ Wrong A to C: 𝑟𝐴𝐶 ≠ 𝑓𝑔
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Model-Predicted Covariances: Example

• This model with all four outcomes in the likelihood has six covariances to be predicted 
by the model—4 will be perfectly predicted given direct paths/covariances:

➢ 𝐶𝑜𝑣 𝑥1, 𝑥2 = 𝝈𝒙𝟏,𝒙𝟐

➢ 𝐶𝑜𝑣 𝑥1, 𝑦1 = 𝝈𝒙𝟏
𝟐 𝜷𝒙𝟏

𝒚𝟏
+ 𝝈𝒙𝟏,𝒙𝟐 𝜷𝒙𝟐

𝒚𝟏

➢ 𝐶𝑜𝑣 𝑥2, 𝑦1 = 𝝈𝒙𝟐
𝟐 𝜷𝒙𝟐

𝒚𝟏
+ 𝝈𝒙𝟏,𝒙𝟐 𝜷𝒙𝟏

𝒚𝟏

➢ 𝐶𝑜𝑣 𝑦1, 𝑦2 = 𝝈𝒚𝟏
𝟐 𝜷𝒚𝟏

𝒚𝟐

• The model-implied variances of 𝑦1 and 𝑦2 are complex but perfect because of each 𝒆𝒊:

➢ 𝑉𝑎𝑟 𝑦1 = 𝝈𝒙𝟏
𝟐 𝜷𝒙𝟏

𝒚𝟏
𝜷𝒙𝟏
𝒚𝟏
+ 𝝈𝒙𝟐

𝟐 𝜷𝒙𝟐
𝒚𝟏
𝜷𝒙𝟐
𝒚𝟏
+ 𝟐 𝝈𝒙𝟏,𝒙𝟐 𝜷𝒙𝟐

𝒚𝟏
𝜷𝒙𝟏
𝒚𝟏
+ 𝝈𝒆𝒚𝟏

𝟐

➢ 𝑉𝑎𝑟 𝑦2 = 𝝈𝒙𝟏
𝟐 𝜷𝒙𝟏

𝒚𝟏
𝜷𝒙𝟏
𝒚𝟏
𝜷𝒚𝟏
𝒚𝟐
𝜷𝒚𝟏
𝒚𝟐
+ 𝝈𝒙𝟐

𝟐 𝜷𝒙𝟐
𝒚𝟏
𝜷𝒙𝟐
𝒚𝟏
𝜷𝒚𝟏
𝒚𝟐
𝜷𝒚𝟏
𝒚𝟐
+ 𝟐 𝝈𝒙𝟏,𝒙𝟐 𝜷𝒙𝟐

𝒚𝟏
𝜷𝒙𝟏
𝒚𝟏
𝜷𝒚𝟏
𝒚𝟐
𝜷𝒚𝟏
𝒚𝟐

+ 𝝈𝒆𝒚𝟏
𝟐 𝜷𝒚𝟏

𝒚𝟐
𝜷𝒚𝟏
𝒚𝟐
+ 𝝈𝒆𝒚𝟐

𝟐
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𝑥1𝑖 = 𝜷𝟎
𝒙𝟏 + 𝒆𝒊

𝒙𝟏

𝑥2𝑖 = 𝜷𝟎
𝒙𝟐 + 𝒆𝒊

𝒙𝟐

𝑦1𝑖 = 𝜷𝟎
𝒚𝟏
+ 𝜷𝒙𝟏

𝒚𝟏
𝑥1𝑖 + 𝜷𝒙𝟐

𝒚𝟏
𝑥2𝑖 + 𝒆𝒊

𝒚𝟏

𝑦2𝑖 = 𝜷𝟎
𝒚𝟐
+ 𝜷𝒚𝟏

𝒚𝟐
𝑦1𝑖 + 𝒆𝒊

𝒚𝟐

x1

y2y1

𝜷𝒙𝟏
𝒚𝟏

𝜷𝒚𝟏
𝒚𝟐

x2 𝜷𝒙𝟐
𝒚𝟏

𝑒𝑦2

𝟏

𝑒𝑦1

𝝈𝒙𝟏,𝒙𝟐

𝟏

2 covariances are only predicted by the other 

direct paths/covariances, and will not be perfect:

𝐶𝑜𝑣 𝑥1, 𝑦2 = 𝝈𝒙𝟏
𝟐 𝜷𝒙𝟏

𝒚𝟏
𝜷𝒚𝟏
𝒚𝟐
+ 𝝈𝒙𝟏,𝒙𝟐 𝜷𝒙𝟐

𝒚𝟏
𝜷𝒚𝟏
𝒚𝟐

𝐶𝑜𝑣 𝑥2, 𝑦2 = 𝝈𝒙𝟐
𝟐 𝜷𝒙𝟐

𝒚𝟏
𝜷𝒚𝟏
𝒚𝟐
+ 𝝈𝒙𝟏,𝒙𝟐 𝜷𝒙𝟏

𝒚𝟏
𝜷𝒚𝟏
𝒚𝟐

Each unique intercept will 

capture any leftover misfit 

to its variable’s mean

𝝈𝒆
𝟐
𝒙𝟐

𝝈𝒆
𝟐
𝒙𝟏
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Path Model Evaluation: Steps 1, 2, and 3

1. Assess global absolute model fit

➢ Recall that variable means and variances are perfectly predicted
(just-identified) → misfit comes from mis-predicted covariances

➢ 𝜒2 is sensitive to large sample size, so pick at least one global fit 
index from each class; hope they agree (e.g., CFI, RMSEA)

2. Identify localized model strain

➢ Global model fit means that the observed and predicted covariance 
matrices aren’t too far off on the whole… says nothing about the 
specific matrix elements (reproduction of each covariance)

➢ Consider normalized residuals and modification indices to try and 
“fix” the model – add missing relationships that should be there

3. Revise the model until it fits

➢ Make sure all the parameters make sense (e.g., no negative variances)

Good global and local fit? Great, but we’re not done yet…
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Step #4 in Model Evaluation
4. Inspect parameter effect sizes and significance

➢ A good-fitting model does not necessarily imply a good model!

▪ Can reproduce lack of covariance quite well and still not have anything 

useful – e.g., correlation of .2 → 4% shared variance?

▪ Effect size (R2 for variance explained) is practical significance

20

This example model could have 

“excellent fit” (testable because 

DF=1) but no significant paths…

Why? Good absolute fit just means 

it has successfully reproduced the 

(non)relationships among these 

variables—not whether there are 

relationships worth reproducing!

x1

y2

y1

x2

ey1

𝛔𝐞
𝟐
𝐲𝟐

𝛔𝐞
𝟐
𝐲𝟏

.01

.02

.05

.03

𝟏
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Complications in Path Models 

for Generalized Outcomes
• Fewer path model software options are available that include 

link functions and non-normal conditional distributions

➢ I am most familiar with Mplus (and have been learning STATA GSEM)

➢ These two vary in options for outcome types and estimation methods

• Differences compared to path models with MVN outcomes

➢ No residual variances means: 

▪ Traditional measures of absolute fit are not available when using ML

▪ Conventional standardized solutions may not be available

▪ Residual (error) covariances must be included via random intercepts

➢ Different estimation methods will generally not lead to the same result, 
even given complete data

▪ Mplus: (Robust) full-info ML or limited-info WLSMV

▪ STATA GSEM: Equation-wise ML (functions more like limited-info ML)
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Mplus for Generalized Outcomes
• Link functions: 

➢ Logit (binary, cumulative, adjacent, or baseline) or probit (binary, 
cumulative, or baseline) for categorical outcomes; log for counts

• Distributions: 

➢ Multinomial (so binary, ordinal, or nominal outcomes) 

➢ Counts: Poisson and negative binomial (and zero-altered for each, 
negative binomial hurdle (can trick it into Poisson hurdle)

• Estimation for all outcomes using (robust) full-info ML

➢ Quadrature or Montecarlo numeric integration

➢ Missing observations assumed missing at random (conditionally random)

• For binary or ordinal outcomes, there is also the limited-info 
estimator WLSMV (i.e., “diagonally-weighted least squares)

➢ Works fast, provides absolute fit indices, but assumes any missing 
observations are missing completely at random

22PSQF 6249: Lecture 9



STATA GSEM for Generalized Outcomes

• Right: Relative to Mplus, STATA 

v. 16 has many more options for 

distributions (rows) and link 

functions (columns)…

23

… But estimation is more 

problematic given

missing data…
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Estimation in STATA GSEM
• What ML estimation STATA GSEM uses is unclear… 

from v. 16 manual:
➢ It’s an “equation-wise deleter”: it drops the exogenous predictors from joint 

normality assumption (treats them as given, so they are not in the likelihood) 

➢ “sem and gsem produce the same numeric solutions for the parameters and 
the SEs when both can fit the same model” → when all outcomes are MVN

➢ “gsem will often be able to use more observations from the data 
than sem will, assuming you do not use sem with method MLMV”

• What I’ve also figured out through trial and error:
➢ It allows the same trick as Mplus—you *can* bring exogenous predictors into 

the likelihood  as outcomes by listing their means, variances, or covariances as 
parameters → but that doesn’t change which cases get used in each equation

➢ If you ask for robust SEs, it changes to QLM (which is limited-info ML), 
and the estimates do not change (and neither does the model LL value)

➢ The results from the same model with incomplete outcomes do not match those 
of Mplus when it uses full-info ML (then assuming missing at random, MAR)

• My conclusion: STATA GSEM does not do truly full-info ML, which means 
all variables are assumed missing completely at random (MCAR, not MAR)
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Mediation model (regression with better marketing):

• X causes M, M causes Y

• M is an outcome of X 

but a predictor of Y

Moderation model:

• M adjusts the size of 

X→Y relationship

• M is a predictor of Y, 

and is correlated with X

• Moderation is represented

by an interaction effect

Terminology: Mediation ≠ Moderation

X

M

Y

X

M

Y

This figure does  

NOT depict an 

estimable model.

X

M Y

X*M

This is what is 

actually implied

by above model.
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Terminology:  Mediation Effects

The big question in mediation:

• Phrased as usual regression →
Is the effect of X predicting Y still 
significant after controlling for M?

• Phrased as “mediation” →
Is the effect of X predicting Y 
significantly mediated by M?   OR
Is there a significant indirect effect 
of X through M in predicting Y?

• Phrased either way, is 𝒄 ≠ 𝒄′?

Direct Effects:

• 𝒂 = X to M path (M on X;)

• 𝒃 = M to Y path (Y on M;)

• 𝒄′ = X to Y path controlled 
for M (Y on X;)

• 𝒂 ∗ 𝒃 = indirect effect of X to Y

• The estimates for 𝒄 ‒ 𝒄′ and 𝒂 ∗ 𝒃
will be equivalent in MVN 
observed variables (if same N)

X

M

YX Y𝒄 𝒄′

𝒂 𝒃
𝒄 = uncontrolled X to Y path

(Y regressed on X)
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Old versus New Rules for Mediation

• Baron & Kenny (1986, JPSP) rules were standard for a long time…

➢ Simulation studies have found these rules to be way too conservative

• Old rule that can now be broken: 

➢ X must predict Y in the first place (𝒄 must be initially significant)

➢ When not? Differential power for paths; suppressor effects of mediators

➢ Mediation is really about whether 𝒄 ≠ 𝒄′, not whether each is significant

• Old rules that pry still hold:

➢ X must predict M (𝒂 must be significant)

➢ M must predict Y (𝒃 must be significant)

X

M

YX Y𝒄 𝒄′

𝒂 𝒃
𝒄 = uncontrolled X to Y path

(Y regressed on X)

27PSQF 6249: Lecture 9



Testing Significance of Mediation
• Need to obtain a SE in order to test if 𝒄 ‒ 𝒄′ = 𝟎 or if 𝒂 ∗ 𝒃 = 𝟎

➢ For 𝒄 ‒ 𝒄′→ “difference in coefficients SE”

➢ For 𝒂 ∗ 𝒃→ “product of coefficients SE” → we’ll start here

• Use “multivariate delta method” (second-derivative approximation 
shown here) to get SE for product of two random variables 𝒂 ∗ 𝒃

➢ 𝑆𝐸𝑎∗𝑏 = 𝑎2𝑆𝐸𝑏
2 + 𝑏2𝑆𝐸𝑎

2 + 𝑆𝐸𝑎
2𝑆𝐸𝑏

2

➢ An equivalent formula to calculate 𝑆𝐸𝑎∗𝑏 that may have less rounding error 

because it avoids squaring 𝒂 and 𝒃 is  𝑆𝐸𝑎∗𝑏 =
𝑎𝑏 𝑡𝑎

2+𝑡𝑏
2+1

𝑡𝑎𝑡𝑏

➢ This is known as the “Sobel test” and can be calculated by hand using the 
results of a simultaneous path model or separate regression models, also 
provided through MODEL INDIRECT/CONSTRAINT in Mplus, NLCOM in 
STATA SEM or GSEM, or TESTFUNC in SAS PROC CALIS
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Testing Significance of Mediation
• One problem: we *shouldn’t* use this SE for usual significance test

➢ So, nope:     𝑡𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 =
𝑎∗𝑏

𝑆𝐸𝑎∗𝑏
or     95% 𝐶𝐼 = 𝑎 ∗ 𝑏 ± 1.96 ∗ 𝑆𝐸𝑎∗𝑏

➢ Why? Although the estimates for 𝒂 and 𝒃 will be normally distributed, 
the estimate of their product won’t be, especially if 𝒂 and 𝒃 are near 0

Distribution of 𝒂 Distribution of 𝒃 Distribution of 𝒂 ∗ 𝒃

𝒂 = 0 

𝒃 = 0 

𝒂 = .50 

𝒃 = .75 
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Testing Significance of Mediation
• So what do we do? Another idea based on same premise:

➢ For 𝒂 ∗ 𝒃→ find “distribution of the product SE” → 𝒛𝒂 ∗ 𝒛𝒃 =
𝒂

𝑺𝑬𝒂
∗

𝒃

𝑺𝑬𝒃
in which the sampling distribution does not have a tractable form, 
but tables of critical values have been derived through simulation for the 
single mediator case (but may not generalize to complex models)

➢ Implemented in PRODCLIN program for use with SAS, SPSS, and R

• A better solution: bootstrap the data to find the empirical SE and 
asymmetric CI for the indirect effect

➢ Bootstrap = draw 𝑛 samples with replacement from your full data,
re-estimate mediation model and get 𝒂 ∗ 𝒃 for each bootstrap sample

➢ Point estimate of 𝒂 ∗ 𝒃 is mean or median over 𝑛 bootstrap samples

➢ 𝑆𝐸𝑎∗𝑏 is standard deviation of estimated 𝒂 ∗ 𝒃 over 𝑛 bootstrap samples

➢ 95% CI can be computed as estimates at the 2.5 and 97.5 percentiles

➢ Typically at least 500 or 1000 𝑛 bootstrap samples are used
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Testing Significance of Mediation
• There are multiple kinds of bootstrap CIs possible in testing the 

significance of the 𝒂 ∗ 𝒃 indirect effect within MVN data

➢ Regular bootstrap CI = “percentile” (as just described)

▪ In Mplus, OUTPUT: CINTERVAL(bootstrap); in STATA SEM, vce(bootstrap)

➢ Bias-corrected bootstrap CI = shifts CIs so median is sample estimate
*** Supposed to be best one

▪ In Mplus, OUTPUT: CINTERVAL(BCbootstrap); not sure about STATA SEM/GSEM

➢ Accelerated bootstrap CI = ???

▪ Not given in Mplus (as far as I know); not sure about STATA SEM

• For models with not simply MVN outcomes (i.e., non-normal mediators 
or outcomes, multilevel data), a different bootstrap approach can be 
implemented as a separate non-model step using any program’s output

➢ Parametric, Monte Carlo, or empirical-M bootstrap →
Draw repeatedly from 𝒂 and 𝒃 parameter distributions instead of the data, then 
compute point estimates, SEs, and CIs from those distributions

➢ See http://www.quantpsy.org/medn.htm for online calculators
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Mediation with Non-Normal Variables
• The path models in this class (Example 4b, 5a, and 6a) have assumed 

every variable in the likelihood* is conditionally multivariate normal

➢ * In the likelihood → is predicted by something or has an estimated mean, 
variance, or covariance (i.e., the missing data trick called “I used FIML”)

➢ In reality, one may have non-normal (NN) mediators or outcomes…

▪ For mediation with a binary outcome, see Example 6b from same class

• Estimation gets tricky, because there is no closed-form ML anymore 

➢ NN outcomes → fit link function to Y, requires numeric integration

▪ Becomes exponentially more complex with more non-normal variables

➢ NN mediators → fit link function M, but estimation is even trickier

▪ In Mplus, requires Monte Carlo integration (re-sampling approach)

• Interpretation gets tricky, because the paths are of different kinds

➢ For example, X → M → binary Y:  X → regular M, M → logit Y

➢ For example, X → binary M → Y:  X → logit M, regular M → Y

➢ Oh, and there are no standard absolute model fit statistics in ML 
(no observed covariance matrix to compare the model predictions to) 
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Path Models and Mediation: Summary
• Path models are a very useful way to test many different 

types of multivariate hypotheses simultaneously:

➢ Unique direct and indirect effects (“mediation”)

➢ Differences in effect size (via model constraints)

➢ Mediation relationships (direct and indirect effects)

• Good fit is a pre-requisite to interpreting the model results, 
but good fit does not mean it is a good (useful) model

➢ Good fit = model reproduces the covariance matrix of the variables 
(but it does not indicate how big or small those relationships are)

➢ However – when all possible relationships are estimated (either as 
covariances or direct regressions), fit is perfect and irrelevant

▪ Also known as “multivariate regression” with an “unstructured R matrix”

• Make sure you know what’s happening to the predictor variables!

➢ Are their means, variances, and covariances part of the likelihood? Then they 
have an assumed distribution (usually MVN), which may not make any sense!

➢ Otherwise, they may result in dropped cases even when using “full-information” ML!
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Structural Equation Modeling (SEM)
• The term “SEM” gets used to describe many different models, 

but fundamentally, SEM consists of two distinct parts:

➢ Measurement model: Mapping of observed indicator outcomes to the 
latent variable(s) they measure (to create better, “latent” constructs) 

▪ “CFA” if indicators are continuous and “normal enough”

▪ “IFA” (or “IRT”) if indicators are binary, ordinal, or nominal

▪ “?name?” if indicators require some other link function (e.g., counts)

▪ Factors/thetas/traits are (usually) assumed to be multivariate normal

➢ Structural Model: Path analysis using those MVN latent variables

▪ And using other observed variables that are not used as 
part of the measurement model for those latent variables

▪ Other observed variables can be of whatever kind, so long as 
the observed outcomes have their distributions modeled properly

– e.g., a binary predictor variable (i.e., not in the likelihood) does not require a logit, 
but a binary outcome variable does (so then it’s on the CATEGORICAL statement)

– You must create your own contrasts to include categorical predictors in Mplus (i.e., 
there is no “CLASS variable” as in SAS, “factor variable” as in R, or “i. variable” as in Stata)
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SEM:  Model Identification
• SEM integrates both measurement and path models, 

so the identification rules for SEM borrow from both

➢ Measurement models for each latent variables must be locally 

identified → each factor has its own scale (mean, variance)

➢ The overall model must be identified (solvable)

• A necessary (but not sufficient) way of ensuring identification 

is the “t-rule” (i.e., a counting rule that I never use in SEM)

➢ Number of estimated (“free”) parameters must be less than the total 

number of means + variances/covariances of all observed variables (𝑣) 

in the likelihood: Total possible DF = 
𝑣∗(𝑣+1)

2
+ 𝑣

➢ Practical tip: don’t count, just look at your model, and see if it seems 

logical (e.g., don’t have a directed path AND a covariance between two 

variables), make sure all latent factors are locally identified, and beware 

of negative factor loadings (then factors won’t know which way to go)
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SEM:  What goes into model fit

• Back in CFA/IFA, misfit was almost always due to covariances

➢ If each indicator has its own intercept or thresholds, then the indicator 

means or response category frequencies will be predicted perfectly

➢ If each (normal) indicator has its own residual variance, then 

the indicator total variance will be predicted perfectly

➢ Factor loadings are supposed to predict covariances among indicators, 

so once you have 4+ indicators in a model → potential for misfit

• The same is true in SEM, but with a catch, because only 

some covariances “count” towards model fit in Mplus

➢ Covariances amongst variables in the likelihood COUNT

➢ Covariances for “predictors” (NOT in the likelihood) with “outcomes” 

(in the likelihood) COUNT

➢ Covariances amongst “predictors” (NOT in the likelihood) do NOT count
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SEM:  What to do first?
• Because SEM is composed of two distinct parts… 

➢ Measurement model that maps latent variables onto observed indicators

➢ Structural model for relations involving those latent variables

• … you should build these models sequentially

➢ Start by ensuring each over-identified factor fits adequately

➢ THEN combine all latent factors and other observed variables in 
the same model, estimating all possible relations among them 
(this “saturated” model will be the best-fitting structural model)

▪ Helpful to phrase all associations as covariances to see bivariate relations first

▪ Local misfit will likely only be due to cross-construct mis-predicted covariances 
(remedy before continuing, creating a new saturated structural model if needed)

➢ Then modify the structural model to answer your questions, and see if 
any simpler model is NOT worse than the saturated structural model

▪ Can then change to regression paths to examine unique relations

▪ Will be a nested model only if not all structural relations are directly included

• Because the measurement model will dominate DF for model fit, 
informative tests of the structural model need to focus THERE only
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SEM:  What to do if I can’t do it?
• A simultaneous estimation of measurement and structural 

models in SEM is the gold standard, but may not work for you

• SEM is likely to break (i.e., not converge, give crazy SEs) when:

➢ Sample sizes are small (few persons relative to # estimated parameters)

➢ Many estimated parameters (especially with few persons)

➢ Some outcomes are non-normal (link functions are involved)

➢ Many latent variables are included (especially with link functions)

➢ Latent factors are not well-identified (2 indicators is not enough)

➢ Latent variable interactions are included (which require numeric 
integration → repeated rectangling of the latent trait distributions)

➢ Switching to Bayes estimation may fix at least some of this, but if not…

• What to do next? Alternatives range from ok to terrible…
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2 Problems with SEM Alternatives
(that replace latent circles with observed boxes)

1. A single sum score assumes unidimensionality and parallel 
items: equal loadings (discrimination) + equal error variance

➢ Factor scores are equivalent to sum scores only under a parallel items model

➢ Otherwise, the sum score is inconsistent with the factor model estimated

2. Observed variables are assumed perfectly reliable (or said 
differently, that each person’s trait estimate is known exactly)

➢ If the trait standard error (𝑆𝐸)=0, then we know each person’s true value 
(otherwise, it comes from a distribution with variance given by 𝑆𝐸2)

➢ If zero variability of a person’s trait estimate is assumed, then the SEs 
for its relationships with other variables will be downwardly-based (so 
effects will look more precise and more significant than they should be)

➢ If reliability is not perfect, then the estimates of its relationships with 
other variables will be downwardly-biased (weaker than they should be)

➢ See Cole & Preacher (2014) for an illustration

• Let’s evaluate 3 strategies from this view of potential problems…
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Option 1:  Parceling Indicators

• Parceling = sum or average only some of the indicators

• For example, for a factor with 12 original indicators:

➢ ParcelA = i1+i2+i3+i4, ParcelB = i5+i6+i7+i8, ParcelC = i9+i10+i11+i12

➢ Factor BY ParcelA* ParcelB* ParcelC*; Factor@1; [Factor@0];

• Guess what happens to model fit???

➢ Total possible DF for actual 12 indicators = 
12 12+1

2
+ 12 = 90

➢ Estimated DF for actual 12 indicators = 12𝜆𝑖+12𝜇𝑖+12𝜎𝑒𝑖
2 = 36

➢ Remaining DF leftover = 90 − 36 = 54 = lots of room for misfit

➢ Total possible DF for 3 “parcels” = 
3 3+1

2
+ 3 = 9

➢ Estimated DF for 3 “parcels” = 3𝜆𝑖+3𝜇𝑖+3𝜎𝑒𝑖
2 = 9

➢ Remaining DF leftover = 9 − 9 = 0 = fit is “perfect” (just-identified)
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Option 1:  Parceling Indicators
• So contrary to what others may say… PARCELING IS

TOTALLY CHEATING AND YOU SHOULD NOT DO IT

• That being said, here’s how to parcel responsibly if you must:

➢ Recognize that parceling assumes tau-equivalence (equal loadings) 
of the indicators within each parcel, so verify that ahead of time

➢ Otherwise, you will get different model fit and parameter estimates 
across parceling options (should report this “parceling allocation 
variability”; see Sterba 2019 for more info)

➢ Be honest that parceling is an intermediate choice between:

▪ ASU completely (one sum score to replace a latent factor)

▪ ASU sort of (parceling only some of the indicators together)

▪ An actual indicator-specific measurement model that reflects all the data

➢ Recognize that different combinations of indicators to parcels can 
create very different results (especially for “subscales” of subscales), 
and do NOT use parcels as a way to “control for” or HIDE misfit
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Instead, try a simpler measurement model
• One way to save estimated parameters—if can be done without hurting 

model fit too much—is to fit constrained measurement models

• For example, for a factor with 12 original indicators:

➢ Total possible DF for actual 12 indicators = 
12 12+1

2
+ 12 = 90

➢ Used DF for full one-factor model = 12𝜆𝑖+12𝜇𝑖+12𝜎𝑒𝑖
2 = 36

➢ Used DF for tau-equivalent (Rasch) factor model = 1𝜆𝑖+12𝜇𝑖+12𝜎𝑒𝑖
2 = 25

▪ It is more difficult to estimate more loadings than more 𝝁𝒊 or 𝝈𝒆𝒊
𝟐

➢ Used DF for parallel items factor model: 1𝜆𝑖+12𝜇𝑖+1𝜎𝑒𝑖
2 = 14

➢ Used DF for an “empty means” parallel items model: 1𝜆𝑖+1𝜇𝑖+12𝜎𝑒𝑖
2 = 3

➢ If not all loadings/residual variances/intercepts can be constrained 
equal across indicators, perhaps at least some of them can? 

▪ You can test the fit of constraints that parceling would have just assumed!

▪ Mplus allows you to consider and test intermediate possibilities, not just 
all or nothing with respect to each indicator gets its own parameter(s)

• In IFA/IRT, consider recoding sparse category responses 
into the next category (fewer thresholds to estimate)
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Option 2a: Single-Indicator Models
• If you have determined that a single latent factor fits a set of indicators, 

one common option is a “single-indicator” sum score replacement

• Assuming perfect reliability (i.e., omega=1) would look like this:

➢ Factor BY sumscore@1; sumscore@0; Factor*; 

➢ So sumscore’s residual variance = 0 because its variance all goes to “factor variance”

• Better: Correct for omega reliability (as estimated from your data, or a 
plausible upper-bound for reliability based on previous research):

➢ Omega: 𝛚 = 𝐕𝐚𝐫 𝑭𝒔 ∗ (𝚺𝝀𝒊)
𝟐 / [𝐕𝐚𝐫 𝑭𝒔 ∗ (𝚺𝝀𝒊)

𝟐+ 𝚺 𝐕𝐚𝐫(𝒆𝒊𝒔) + 𝟐𝚺(𝒆𝒊𝒔 𝐜𝐨𝐯)]

➢ Factor BY sumscore@1; sumscore* (ResVar); Factor*;

➢ MODEL CONSTRAINT: ResVar = (𝟏 − 𝛚) ∗ 𝐕𝐚𝐫(𝒔𝒖𝒎𝒔𝒄𝒐𝒓𝒆𝒔);

▪ Need to know variance of sumscores (as “total” variance) for inclusion in ResVar formula

➢ Sumscore residual variance is then its “error” variance only (rest → “true” factor variance)

➢ Note: this is not possible if using IRT/IFA factors (because reliability varies over trait)

• Either way, the factor can be “mean-centered” by fixing its mean = 0:   

• [sumscore*]; [Factor@0]; So sumscore intercept holds its mean instead
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Option 2b: Single-Indicator Models
• Can I just treat the factor scores as observed? Not really…

• Factor score = random effect = central tendency of a person’s 
unobserved latent variable distribution 

➢ EAP estimates in ML → mean; MAP estimates in WLSMV → mode (worse)

➢ Variance of each person’s latent distribution is given by factor score SE2

• Because they are from a latent variable, each factor score really 
has a distribution of possible values for each person

➢ Factor scores are estimated from a multivariate normal prior distribution, 
and thus will be shrunken (pushed to mean) given low reliability

➢ There is likely much uncertainty per person, especially for few indicators

▪ Although factor scores (thetas) are routinely used in IRT, it’s because they 
are usually based on dozens of items per factor (→ “small enough” SE)

• Btw, you CANNOT create factor scores by using the loadings as such:

➢ 𝑭𝒔 = 𝝀𝟏𝟏𝒚𝟏𝒔+ 𝝀𝟐𝟏𝒚𝟐𝒔+ 𝝀𝟐𝟏𝒚𝟑𝒔→ Is a COMPONENT model, not a FACTOR model
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Option 2b: Single-Indicator Models
• An EAP factor score is an observed variable (just like a sum score is), 

but it is more consistent with factor model structure it came from

• Assuming perfect factor score (fscore) reliability would look like this:

➢ Factor BY fscore@1; fscore@0; Factor*; 

➢ So fscore’s residual variance = 0 because its variance all goes to “factor variance”

• Better: In CFA, you can use factor score reliability estimated from your
data (proportion of true trait differences relative to total trait variance):

➢ Factor score reliability: 𝝆 =
𝛔𝐅
𝟐

𝛔𝐅
𝟐+𝐒𝐄𝐅𝐒

𝟐

➢ Factor BY fscore@1; fscore* (ResVar); Factor*;

➢ MODEL CONSTRAINT: Resvar = (𝟏 − 𝝆) ∗ (𝛔𝐅
𝟐+𝐒𝐄𝐅𝐒

𝟐 );

▪ Need to compute “total” variance (of factor scores + error variance) for inclusion in ResVar formula

➢ Fscore residual variance is then its “error” variance only (rest → “true” factor variance)

➢ Note this is NOT the same thing as Omega reliability for sum scores, and it’s still 
not possible to do if for IRT/IFA factors (because reliability varies over the trait)

• Either way, the factor can be “mean-centered” by fixing its mean = 0:   

• [fscore*]; [Factor@0]; So subscale intercept holds its mean instead
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𝛔𝐅
𝟐 = factor variance from model solution

𝐒𝐄𝐅𝐒
𝟐 = error variance of EAP factor scores



Example: Estimating Reliability
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SAMPLE STATISTICS FOR ESTIMATED FACTOR SCORES 

     SAMPLE STATISTICS 

           Means 

              SITP          SITP_SE       SITN          SITN_SE 

              ________      ________      ________      ________ 

 1              0.000         0.472         0.000         0.418 

           Covariances 

              SITP          SITP_SE       SITN          SITN_SE 

              ________      ________      ________      ________ 

 SITP           0.777 

 SITP_SE        0.000         0.000 

 SITN           0.533         0.000         0.825 

 SITN_SE        0.000         0.000         0.000         0.000 

New/Additional Parameters 

    OMEGAP             0.744      0.020     37.956      0.000 

    OMEGAN             0.775      0.014     56.803      0.000 

Factor Score Reliability 

(proportion of true

individual differences)

SitP: 𝜌 =
1

1+ .4722
= .818

SitN: 𝜌 =
1

1 + .4182
= .851

Omega Reliability 

for Sum Scores



Option 2: Single-Indicator Models
• Considering the two potential problems with single-indicator 

representations of latent factors (sum scores or factor scores):

1. A single sum score assumes unidimensionality and parallel 
items: equal loadings (discrimination) + equal error variance

➢ For sum scores: multidimensionality could be a big problem without 
any latent trait analyses to support the implied factor structure 

▪ Even if unidimensionality holds, if parallel items does not fit, the sum scores are 
not consistent with the model (and may not be available given missing items)

➢ For factor scores: these reflect the estimated model, but will be shrunken 
towards the mean (more so for fewer items and greater unreliability)

▪ Research suggests that they should be obtained from models that have same 
covariates as will be used in eventual structural models (see Curran et al., 2018)

2. Assuming perfect reliability of observed variables (or said 
differently, that that each person’s trait estimate is known exactly)

➢ This is a problem unless correcting the single indicator for reliability, 
but this only possible when using CFA (in which reliability is constant)

➢ So what to do in IRT/IFA models instead???
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Option 3: Multiple Plausible Values
• Uncertainty in the factor scores from IFA/IRT models 

can be represented explicitly using multiple so-called 

“plausible values” of factor scores

➢ Strategy used in some large-scale testing programs (e.g., NAEP)

➢ Generate 𝑥 draws from a person’s factor score distribution, save those 

draws to separate datasets, analyze each dataset, then combine results 

using procedures and rules for multiple imputation of missing data

➢ That way the uncertainty of factor scores per person is still represented, 

along with the factor model parameters that distinguish the indicators

➢ Research suggests a minimum of 5 values and a max of ??? 

(but with diminishing returns after 100 or so)

➢ Mplus now provides this using a 4-step process (btw, the amount 

of analyst effort is the same no matter how many draws you use)

• Could also be implemented given MCMC estimation by 

using trait values from chain (weighted by 1/#values)
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Plausible Values in Mplus, Step by Step

• Step 1: Estimate factor model using ML/MLR, save syntax for estimated 

parameters as start values (use OUTPUT: SVALUES to save typing)

• Step 2: Feed in estimated parameters as fixed parameters (replace all *

with @), re-estimate model using ESTIMATOR=BAYES to generate the 

factor score draws for each person and save to separate data sets

➢ Could do BAYES estimation for all of it, but if you have been using ML/MLR, 

you should use those parameters instead of letting it find new ones

• Step 3: Merge separate datasets together to create 𝑥 complete datasets 

for analysis (e.g., using my SAS macro as part of Example 9c in this class)

• Step 4: Tell Mplus to estimate your model using the factor scores as 

observed variables on each of the 𝒙 datasets, and to combine the results 

(TYPE = IMPUTATION)

➢ Will be easier and go faster than analyses of the original latent variables, 

but still preserves the uncertainty in the factor score estimates per person, 

along with the factor model from which those factor scores were derived
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https://www.lesahoffman.com/CLDP948/index.html


SEM: My Big Picture
• SEM is great when you can do it

➢ Provides a means to make almost any idea an empirical question

➢ Measurement models create latent constructs (= random effects) that 
better represent trait individual differences than any one outcome

➢ Structural models test relations involving those latent constructs

➢ Measurement models will dominate global fit tests, so use a saturated 
structural model as baseline when testing nested structural models

▪ Do omitted structural relations make the model fit not worse than saturated?

• SEM is not a panacea for everything

➢ ML MAY BREAK when your models get too complicated (or realistic)

➢ You have named your factors, but it doesn’t mean you are right! (Validity)

➢ Distributional assumptions matter, but so do linear model assumptions 
(nonlinear measurement and structural models may be needed)

➢ Factor scores are not perfectly determined (and neither are sum scores), 
so make sure to represent their uncertainty in any SEM alternative
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