
Higher-Order Factor Models
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• Topics:

➢ The Big Picture

➢ Identification of higher-order models

➢ Measurement models for method effects

➢ Equivalent models



Sequence of Steps in CFA or IFA

1. Specify your measurement model(s)

➢ How many factors/thetas, which items load on which factors, and 
whether your need any method factors or error covariances

➢ For models with large numbers of items, you should start by modeling 
each factor in its own analysis to make sure *each* factor fits its items

2. Assess model fit, per factor, when possible (if 4+ indicators)

➢ Global model fit: Does a one-factor model adequately fit each 
set of indicators thought to measure the same latent construct?

➢ Local model fit: Are any of the covariance discrepancies problematic? 
Any items not loading well (or are too redundant) that you might drop? 

➢ Reliability/Info: Are your standardized loadings practically meaningful?

3. Once your single-factor measurement models are good, 
it’s time to consider the (higher-order) structural model
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Higher-Order Factor Models

• Purpose: What kind of higher-order factor structure best accounts for 

the covariance among the measurement model factors (not items)?

➢ In other words, what should the structural model among the factors look like?

➢ Best-fitting baseline for the structural model has all possible covariances among 

the lower-order measurement model factors → saturated structural model

➢ Just as the purpose of the measurement model factors is to predict covariance 

among the items, the purpose of the higher-order factors is to predict 

covariance among the measurement model factors themselves

➢ A single higher-order factor would be suggested by similar magnitude 

of correlations across the measurement model lower-order factors

• Note that distinctions between CFA, IFA, and other measurement models 

for different item types are no longer relevant for the higher-order model!

➢ Factors and thetas are all multivariate normal latent variables, so a higher-

order model is like a CFA regardless of the measurement model for the items

➢ Latent variables don’t have means apart from their items, so those are irrelevant
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Necessary Measurement Model 
Scaling to fit Higher-Order Factors

“Marker Item” for factor loadings

→ Fix 1 item loading to 1

→ Estimate factor variance 

Because it will become “factor variance 

leftover” = “disturbance”, factor variance 

can’t be fixed (it must be estimated)

Var(F)=?

y1 y2 y3 y4

e1 e2 e3 e4

1 λ21 λ31 λ41

1
μ1

μ2 μ3

μ4κ=0

“Z-Score” for item intercepts or 

thresholds

→ Fix factor mean to 0

→ Estimate all intercepts/thresholds 

All the factor means will be 0 and you 

generally won’t need to deal with them 

in the structural model anyway
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Identifying a 3-Factor Structural Model 
Option 1:  3 Correlated Factors

y1 y2 y3 y4

e1 e2 e3 e4

1 λ21 λ31 λ41

Var(F2)=?

y5 y6 y7 y8

e5 e6 e7 e8

1 λ62 λ72 λ82

Var(F3)=?

y9 y10 y11 y12

e9 e10 e11 e12

1 λ103 λ113 λ123

covF1,F3
covF1,F2 covF2,F3

Measurement Model for Items:

item variances, covariances, and means

Possible DF = (12*13) / 2 + 12 = 90

Estimated DF = 9𝝀𝒊 + 12𝝁𝒊 + 12𝝈𝒆𝒊
𝟐 = 33

DF = 90 – 33 = 57 → over-identified

Structural Model for Factors:

factor variances and covariances, no means

Possible DF = (3*4) / 2 + 0 = 6

Estimated DF = 3 variances + 3 covariances 

DF = 6 – 6 = 0 → just-identified

μ1 μ2 μ3 μ4 μ4 μ6 μ7 μ8 μ9 μ10 μ11 μ12

K1 = 0 κ2 = 0 κ3 = 0

Var(F1)=?
κ1 = 0
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New Structural Model for Factors:

Possible DF = (3*4) / 2 + 0 = 6

Estimated DF = 3𝝀𝑭 + 3𝝈𝒅𝑭
𝟐

DF = 6 – 6 = 0 

→ just-identified

Option 2a:  3 Factor “Indicators” 
(Higher-Order Factor Variance = 1)

F1

y1 y2 y3 y4

e1 e2 e3 e4

1 λ21 λ31 λ41

F2

y5 y6 y7 y8

e5 e6 e7 e8

1 λ62 λ72 λ82

F3

y9 y10 y11 y12

e9 e10 e11 e12

1 λ103 λ113 λ123

Var(HF)=1

λF1 λF2

λF3

Var(d1)=?

If you only have 3 factors, both models will fit the same—the structural model 

is just-identified, and thus the fit of a higher-order factor CANNOT be tested

μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8 μ9 μ10 μ11 μ12

κHF = 0

Same Measurement Model for Items:

Possible DF = (12*13) / 2 + 12 = 90

Estimated DF = 9𝝀𝒊 + 12𝝁𝒊 + 12𝝈𝒆𝒊
𝟐 = 33

DF = 90 – 33 = 57 

→ over-identified

Var(d3)=?Var(d2)=?
κ3 = 0κ2 = 0κ1 = 0

Leftover factor variances (part of factor not predicted 

by higher-order factor) are called “disturbances”
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New Structural Model for Factors:

Possible DF = (3*4) / 2 + 0 = 6

Estimated DF = 2𝝀𝑭 + 1𝝈𝑯𝑭
𝟐 + 3𝝈𝒅𝑭

𝟐

DF = 6 – 6 = 0 

→ just-identified

Option 2b:  3 Factor “Indicators” 
(using Marker Lower-Order Factor)

F1

y1 y2 y3 y4

e1 e2 e3 e4

1 λ21 λ31 λ41

F2

y5 y6 y7 y8

e5 e6 e7 e8

1 λ62 λ72 λ82

F3

y9 y10 y11 y12

e9 e10 e11 e12

1 λ103 λ113 λ123

Var(HF)=?

1
λF2

λF3

Var(d1)=?

If you only have 3 factors, both models will fit the same—the structural model 

is just-identified, and thus the fit of a higher-order factor CANNOT be tested

μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8 μ9 μ10 μ11 μ12

κHF = 0

Same Measurement Model for Items:

Possible DF = (12*13) / 2 + 12 = 90

Estimated DF = 9𝝀𝒊 + 12𝝁𝒊 + 12𝝈𝒆𝒊
𝟐 = 33

DF = 90 – 33 = 57 

→ over-identified

Var(d3)=?Var(d2)=?
κ3 = 0κ2 = 0κ1 = 0

Leftover factor variances (part of factor not predicted 

by higher-order factor) are called “disturbances”
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Structural Model Identification: 

2 Factor “Indicators”

Structural Model for Factors:

Possible DF = (4*5) / 2 + 0 = 10

Estimated DF = 4𝝀𝑭 + 0𝝈𝑭
𝟐 + 1𝝈𝑭,𝑭 + 4𝝈𝒅𝑭

𝟐

— OR —

Estimated DF = 2𝝀𝑭 + 2𝝈𝑭
𝟐 + 1𝝈𝑭,𝑭 + 4𝝈𝒅𝑭

𝟐

DF = 10 – 9 = 1 → over-identified

However, this model will not be 

identified structurally unless there is a 

non-0 covariance between the higher-

order factors 

Measurement Model for Items:

Possible DF = (12*13) / 2 + 12 = 90

Estimated DF = 8𝝀𝒊 + 12𝝁𝒊 + 12𝝈𝒆𝒊
𝟐 = 32

DF = 90 – 32 = 58 → over-identified
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Higher-Order Factor Identification
• Possible structural df depends on # of measurement model 

factor variances and covariances (NOT # items) 

➢ 2 measurement model factors → Under-identified

▪ They can be correlated, which would be just-identified…

▪ Higher-order factor be estimated if both lower-order loadings are equal

➢ 3 measurement model factors → Just-identified

▪ They can all be correlated OR a single higher-order factor can be fit

▪ Some # variance/disturbances per factor (so, 3 total) in either option

▪ Factor variances and covariances will be perfectly reproduced

➢ 4 measurement model factors → Can be over-identified

▪ They can all be correlated (6 correlations required; just-identified) 

▪ They can have a higher-order factor (4 loadings; over-identified)

▪ The fit of the higher-order factor can now be tested
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Examples of Structural Model 

Hypothesis Testing
• Do I have a higher-order factor of my subscale factors?

➢ If 4 or more subscale factors: Compare fit of alternative models 

▪ Saturated Baseline: All 6 factor covariances estimated freely
Alternative: 1 higher-order factor instead (so DF=2)—is model fit WORSE?

➢ If 3 (or fewer) subscale factors: CANNOT BE DETERMINED

▪ Saturated baseline and alternative models will fit equivalently (unless lower-
order factor loadings or disturbance variances are constrained to save DF)

• Do I need a residual covariance, but I’m doing IFA in ML?

➢ Predict those two items with a factor, fix both loadings=1 if you need 
a positive covariance or −1/+1 if you need a negative covariance 

➢ Estimate its factor variance, which then becomes the residual covariance

• Do I have need additional “method factors”?

➢ Some examples…
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Illustrative Example:  “Life Orientation”
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Maydeu-Olivares & Coffman 

(Psychologicial Methods, 

2006) present 4 models by 

which to measure a latent 

factor of optimism using the 

3 positively and 4 negatively 

worded items shown below

A: Single factor

(DF = 14)

B: Two wording 

factors (DF = 13)

C: Three-factor              

“Bifactor” model

(DF = 7)

D: “Random Intercept” 

2-factor model 

(DF = 13)



What to do with method effects?
Maydeu-Olivares & Coffman (2006) 

present 4 ways to measure a latent 

factor of optimism with 3 positively 

and 4 negatively worded items

A: Single “optimism” factor

(which doesn’t fit well)

Opt BY i1* i4* i5* 

i3* i8* i9* i12*;

Opt@1; [Opt@0];

B: “Optimism” and “Pessimism” 

two-factor model (fits better)

Opt BY i1* i4* i5*;  

Pes BY i3* i8* i9* i12*;

Opt WITH Pes*;

Opt@1; [Opt@0];

Pes@1; [Pes@0];
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Negatively-worded 

items 3, 8, 9, and 

12 were not 

reverse-coded

Without recoding, 

factor covariance 

would be negative



One- vs. Two-Factor Models
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Negatively-worded 

items 3, 8, 9, and 

12 were not 

reverse-coded

Without recoding, 

factor covariance 

would be negative

Note: a higher-order factor 

could be included if both 

loadings were fixed to 1, but 

it would fit the same as just 

allowing the two wording 

factors to covary.



Bifactor Model C Fits Well…
Gen BY i1* i4* i5* 

i3* i8* i9* i12*;

Opt BY i1* i4* i5*;  

Pes BY i3* i8* i9* i12*;

Gen@1; Opt@1; Pes@1; 

[Gen@0  Opt@0  Pes@0];

Gen WITH Opt@0 Pes@0; 

Opt WITH Pes@0; 
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Negatively-worded 

items 3, 8, 9, and 

12 were first 

reverse-coded

General “optimism” 

factor is measured 

by all items

Specific factors are 

measured only by 

items with that type 

of wording and are 

both uncorrelated

2 problems in interpreting these factors as desired:

1) “Specific” positive loadings > “general” loadings

2) Specific negative loadings are weak or non-

significant (indicating model is over-parameterized)



Random Intercept Factor Fits Well…
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Opt BY i1* i4* i5* 

i3* i8* i9* i12*;

Opt@1; [Opt@0];

Int BY i1@1 i4@1 i5@1  

i3@1 i8@1 i9@1 i12@1;

Int*; [Int@0];

Opt WITH Int@0;

• General “optimism” factor is measured 

by all items (all loadings estimated)

• New “random intercept” factor allows for 

constant person shifts across items 

(e.g., due to different response scale 

interpretations); Variance = 0.13 here



Heartland Forgiveness Scale (HFS)
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Model 4. Six correlated lower-order 

factors for positive and negative self, 

other, and situation “forgiveness” and 

“not unforgiveness” (reverse-coded)

Total possible df for 18 items = 189
𝑣 ∗ 𝑣 + 1

2
+ 𝑣 =

18 ∗ 19

2
+ 18 = 189

Measurement Model = 48 parameters

12𝜆𝑖+ 18𝜇𝑖 + 18𝜎𝑒𝑖
2

Structural Model = 21 parameters

6𝜎𝐹
2, 15 factor covariances (all possible, 

abbreviated with arrows from line)

Total model DF = 189 – 69 = 120

Self1

Self3

Self5

Self2r

Self4r

Self6r

Other2

Other4

Other6

Other1r

Other3r

Other5r

Sit2

Sit4

Sit6

Sit1r

Sit3r

Sit5r

eot2

eot4

eot6

eot1

eot3

eot5

ese1

ese3

ese5

ese2

ese4

ese6

esi2

esi4

esi6

esi1

esi3

esi5

Self

Neg

Self

Pos

Other

Neg

Other

Pos

Sit

Neg

Sit

Pos

1

1

1

1

1

1

Yamhure Thompson, L., Snyder, C.R.,

Hoffman, L., Michael, S.T., Rasmussen, 

H.N., Billings, L.S., et al. (2005). Dispositional 

forgiveness of self, others, and situations.

Journal of Personality, 73(2), 313-360.



Structural Model = 8 parms

(𝐃𝐅 = 𝟐𝟏 − 𝟖 = 𝟏𝟑)
! Constant Method Effects

Pos BY SelfPos*  (SL)

OtherPos* (SL) 

SitPos*   (SL);

Neg BY SelfNeg*  (SL)

OtherNeg* (SL) 

SitNeg*   (SL);

! No method factor covs

Self@1 Other@1 Sit@1;

Self  WITH Other* Sit*;

Other WITH Sit*;

Pos@1 Neg@1; Pos WITH Neg@0;

Pos Neg WITH Self@0 Other@0 Sit@0;

! Constant factor disturbances

SelfPos* OtherPos* SitPos* (PD);

SelfNeg* OtherNeg* SitNeg* (ND);

HFS Structural Model
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(ND)

(ND)

(ND)

Model 5. Six lower-order factors for positive and 

negative self, other, and situation forgiveness and 

not unforgiveness as before, but now 3 higher-

order correlated factors of Self, Other, and 

Situation, and 2 uncorrelated wording factors
Self

Neg

Self

Pos

Other

Neg

Other

Pos

Sit

Neg

Sit

Pos

Self

Var=1

Other

Var=1

Sit

Var=1

(PL)

(NL)

Pos

Var=1

Neg

Var=1

(SL)

(SL)

(SL)

(SL)

(SL)

(SL)

dsep

dotp

dsi1

dsen

dotn

dsin

(PD)

(PD)

(PD)

Self BY SelfPos(PL)

SelfNeg(NL);

Other BY OtherPos(PL)

OtherNeg(NL);

Sit BY SitPos(PL)

SitNeg(NL);

(PL)

(NL)

(PL)

(NL)



Equivalency across Models

• Remember, the purpose of a measurement model is to reproduce 

the observed variances, covariances, and means of the items

• This means that models that generate the same predicted variances, 

covariances, and means of the items are equivalent models

• This will often not be comforting, but it is the truth…

• Here’s an example: These models make very different theoretical 

statements, but they will nevertheless fit equivalently

• Generally speaking, the fewer DF left over (i.e., the more complicated 

the model), the more equivalent alternative solutions there are

C B A

eB eA

.50 .60

.75 .64

A B C

eB eC

.60 .50

.64 .75
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More Equivalent Models…

Top: One can think these 4 items as 

“effects” (indicators) of depression… 

Left: One can think of any one item as 

“causing” depression and the others as 

“effects” of depression…

Point of the story: CFA/SEM cannot give 

you TRUTH. Contrary to what it’s often 

called, SEM is not really “causal” modeling
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Wrapping Up…

• Fitting measurement and structural models are two separate issues:

➢ Measurement model: Do my lower-order factor loadings

predict the observed covariances among my ITEMS?

➢ Structural model: Do higher-order factor loadings predict the estimated 

covariances among my measurement model FACTORS/THETAS?

▪ A higher-order factor is NOT the same thing as a total score, but it is a way to rescue a 

multidimensional trait that you want to think of as unidimensional in how it relates to 

other constructs (i.e., those relations can be specified with just higher-order factor)

• Figure out the measurement models FIRST, then structural models

➢ I recommend fitting measurement models separately per factor, then bringing 

them together once you have the items for each factor/theta fitting well

➢ This will help to pinpoint the source of misfit in complex models

• Keep in mind that structural models may not be ‘unique’

➢ Mathematically equivalent models can make very different theoretical 

statements, so there’s no real way to choose between them if so…
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