Structural Equation Modeling with Latent Variables (or their EAP Factor Score Representations) using Mplus 8.4

These data were adapted from my dissertation work (see references below) in which 152 adults age 63–87 years were measured on visual impairment (distance acuity and five degrees of contrast sensitivity), processing speed, divided visual attention, and selective visual attention (as measured by the Useful Field of View subtests for each), attentional search efficiency (DriverScan), and simulator driving impairment (as measured by six driving performance indicators).

Hoffman, L., Yang, X., Bovaird, J. A., & Embretson, S. E. (2006). <u>Measuring attention in older adults: Development and psychometric evaluation of DriverScan</u>. *Educational and Psychological Measurement*, 66, 984-1000.

Hoffman, L., McDowd, J. M., Atchley, P., & Dubinsky R. A. (2005). <u>The role of visual attention in predicting driving impairment in older adults</u>. *Psychology and Aging*, 20(4), 610-622.

This example will demonstrate how to estimate structural equation models, including models with mediation and latent variable interactions. But because simultaneous estimation of all effects of interest may not always be possible, this example will also show how to generate and use EAP factor score estimates instead. (For a version of this handout that also works with plausible values of factor scores, see Example9c in this previous class.)

Mplus Code to Read in Data:

```
SEM Example for Driverscan
TITLE:
            FILE = driverscanSEM.csv;
                                         ! FILE is file to be analyzed
DATA:
            FORMAT = free;
                                          ! Free is default
            TYPE = INDIVIDUAL;
                                          ! Individual data is default
VARIABLE: ! Every variable in data set
     NAMES = PersonID sex age75 lncs15 lncs3 lncs6 lncs12 lncs18 far lnps
              lnda lnsa Dscan lane da task crash stop speed time;
      ! Every variable in EACH MODEL
      USEVARIABLES = (to be changed for each model);
      IDVARIABLE = PersonID;
                                          ! To keep ID variable for merging
                              ! To keep ID variable for multiple ! Value to denote missing values
     MISSING = ALL (-9999);
ANALYSIS:
            ESTIMATOR IS MLR; ! For continuous items whose residuals may not be normal
                              ! Sample descriptives to verify data
OUTPUT:
            SAMPSTAT
            MODINDICES (3.84) ! Voodoo to improve model (at p<.05)
                              ! Requests fully standardized solution
            STDYX
                              ! Requests standardized and normalized residuals
            RESIDUAL
            SVALUES;
                             ! Write code with estimated parameters as start values
            TECH4;
                              ! Latent variable correlation matrix
            SAVE = FSCORES; FILE = FactorScores.dat; ! Change .dat name by model
SAVEDATA:
            MISSFLAG = 99;
                                                       ! Missing data indicator
MODEL:
            (model syntax goes here, to be changed for each model)
```

We will begin by fitting single-factor measurement models for each latent factor. This is for two reasons: (1) we need to ensure each unidimensional factor fits its indicators *per se*, and (2) we will generate the EAP factor scores to use later to demonstrate how to use reliability-corrected factor scores as a replacement for latent variables.

Given MLR estimation, the EAP (expected a posteriori estimate) is the mean of the expected factor score distribution for each person. So anytime factor score SE>0 (and reliability is <1), this means the factor score still has error with it that we should correct for to avoid bias in the structural model parameters...

Measurement Model 1 for Visual Impairment (including Omega)

```
VARIABLE: ! Every variable in THIS MODEL
                               USEVARIABLES = lncs15 lncs3 lncs6 lncs12 lncs18 far;
MODEL: ! Measurement model
    Vision BY far@1
                   | Incsis | I
     [far* lncs15* lncs3* lncs6* lncs12* lncs18*];
     [Vision@0]; Vision* (Fvar);
MODEL CONSTRAINT: ! TO GET OMEGA
NEW(SumLoad2 SumError SumRCov Omega);
SumLoad2 = (1+L2+L3+L4+L5+L6)**2;
SumError = E1+E2+E3+E4+E5+E6;
SumRCov = 2*(0);
! Omega = true variance / total variance
Omega = SumLoad2*Fvar / (SumLoad2*Fvar+SumError+SumRCov);
MODEL FIT INFORMATION
Number of Free Parameters
                                                                                                         18
Loglikelihood
                     HO Value
                                                                                         -747.948
                     HO Scaling Correction Factor 1.1255
                         for MLR
                                                                                         -739.282
                     H1 Value
                     H1 Scaling Correction Factor 1.1171
                         for MLR
Information Criteria
                     AKAIKE (AIC)
Bayesian (BIC)
                                                                                        1531.897
                                                                                       1586.327
1529.357
                     Sample-Size Adjusted BIC
                         (n* = (n + 2) / 24)
Chi-Square Test of Model Fit
                                                                                             15.752*
                     Value
                                                                                                 9
                     Degrees of Freedom
                     P-Value
                                                                                              0.0722
                     Scaling Correction Factor
                                                                                              1.1003
                         for MLR
RMSEA (Root Mean Square Error Of Approximation)
                                                         0.070
                     Estimate
                                                                                                0.000 0.126
                     90 Percent C.I.
                     Probability RMSEA <= .05 0.246
CFI/TLI
                     CFT
                                                                                                  0.973
                     TLI
                                                                                                  0.955
Chi-Square Test of Model Fit for the Baseline Model
                     Degrees of Freedom
                                                                                                    15
                     P-Value
                                                                                               0.0000
SRMR (Standardized Root Mean Square Residual)
                                                                                                 0.041
                     Value
```

Measurement Model 1 for Vision:

MODEL RESULTS				mar mailed	
	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	
VISION BY	E3 CIMA CC	0.0.	вэс./э.в.	1 value	
FAR	1.000	0.000	999.000	999.000	
LNCS15	0.497	0.103	4.815	0.000	
LNCS3	0.594	0.118	5.018	0.000	
LNCS6	0.764	0.136	5.628	0.000	
LNCS12	1.296	0.207	6.277	0.000	
LNCS18	1.504	0.237	6.353	0.000	
Means					
VISION	0.000	0.000	999.000	999.000	
Intercepts					
LNCS15	-3.698	0.035	-105.136	0.000	
LNCS3	-3.938	0.035	-113.273	0.000	
LNCS6	-3.730	0.043	-87.639	0.000	
LNCS12	-2.368	0.066	-36.000	0.000	
LNCS18	-1.406	0.081	-17.389	0.000	
FAR	3.026	0.067	45.130	0.000	
Variances					
Variances VISION	0.224	0.067	3.333	0.001	
VISION	0.224	0.007	3.333	0.001	For factor score reliability
Residual Variance	q				SAMPLE STATISTICS FOR ESTIMATED
LNCS15	0.133	0.018	7.435	0.000	FACTOR SCORES
LNCS3	0.105	0.014	7.451	0.000	Moone
LNCS6	0.145	0.028	5.231	0.000	Means VISION VISION SE
LNCS12	0.282	0.047	5.947	0.000	VISION VISION_SE
LNCS18	0.488	0.062	7.933	0.000	0.000 0.194
FAR	0.460	0.055	8.349	0.000	0.000
/- ••• -					Covariances
New/Additional Par		· ·	4 000	0.000	
SUMLOAD2	31.983	7.564	4.228	0.000	VISION 0.186
SUMERROR	1.613	0.102	15.822	0.000	
SUMRCOV OMEGA	0.000 0.816	0.000 0.024	0.000	1.000	$\rho = \frac{.224}{.224 + .194^2} = .856$
OMEGA	0.010	0.024	33.851	0.000	$p = .224 + .194^2 = .030$
					Factor score reliability uses the
CEANDADDIES 1/0	DEGIII EC				factor variance as "true" and the
STANDARDIZED MODEL					
STDYX Standardizat	ion			m m. 111	SE ² of the factor scores (given just
	Datimata	C F	E-+ /C E	Two-Tailed P-Value	above) as "error" (because these
MICION DV	Estimate	S.E.	Est./S.E.	P-value	factor scores have error in them
VISION BY FAR	0.572	0.062	9.190	0.000	anytime reliability is < 1).
LNCS15	0.541	0.082	7.305	0.000	
LNCS13	0.656	0.074	10.605	0.000	Maria and an extensive of
LNCS6	0.688	0.052	12.062	0.000	If we were going to sum the
LNCS12	0.756	0.051	14.815	0.000	indicators, omega would have
LNCS18	0.713	0.031	17.293	0.000	been used for reliability instead.
					· · · · · · · · · · · · · · · · · · ·

	Normalized Res LNCS15	siduals for Cov LNCS3	variances/Cor LNCS6	relations/Residual Correlations LNCS12 LNCS18			
LNCS15	0.000						
LNCS3	1.651	0.000		Local fit looks go	od as well		
LNCS6	-0.045	0.261	0.000				
LNCS12	-0.455	-0.241	0.021	0.000			
LNCS18	-0.629	-0.458	-0.177	0.353	0.000		
FAR	-0 471	-0 731	-0 062	0 198	0 558		

Measurement Model 2 for Driving Impairment (including Omega)

```
VARIABLE: ! Every variable in THIS MODEL
             USEVARIABLES = lane da task crash stop speed time;
MODEL:
          ! Measurement model
  Driving BY crash@1
              da task* lane* stop* speed* time* (L2-L6); ! 1 marker loading
  [lane* da task* crash* stop* speed* time*];
  lane* da task* crash* stop* speed* time* (E1-E6); ! Residual variances
  [Driving@0]; Driving* (Fvar);
  speed WITH time* (ResCov);
MODEL CONSTRAINT: ! TO GET OMEGA
NEW(SumLoad2 SumError SumRCov Omega);
SumLoad2 = (1+L2+L3+L4+L5+L6)**2;
SumError = E1+E2+E3+E4+E5+E6;
SumRCov = 2*(ResCov);
! Omega = true variance / total variance
Omega = SumLoad2*Fvar / (SumLoad2*Fvar+SumError+SumRCov);
 Data set contains cases with missing on all variables.
 These cases were not included in the analysis.
 Number of cases with missing on all variables: 20
MODEL FIT INFORMATION
Number of Free Parameters
                                            19
Loglikelihood
         HO Value
                                       -37.119
         HO Scaling Correction Factor
                                       1.1566
          for MLR
         H1 Value
                                       -30.710
         H1 Scaling Correction Factor
                                       1.1108
          for MLR
Information Criteria
         Bayesian (BIC)
                                       112.239
                                       167.012
         Sample-Size Adjusted BIC
                                       106.915
          (n* = (n + 2) / 24)
Chi-Square Test of Model Fit
         Value
                                        12.791*
         Degrees of Freedom
                                             8
                                        0.1192
         P-Value
         Scaling Correction Factor
                                        1.0021
           for MLR
RMSEA (Root Mean Square Error Of Approximation)
                         0.067
         Estimate
         90 Percent C.I.
                                         0.000 0.133
         Probability RMSEA <= .05
                                        0.293
CFI/TLI
         CFI
                                         0.922
         TLI
                                         0.854
Chi-Square Test of Model Fit for the Baseline Model
         Value
                                        76.677
         Degrees of Freedom
                                           1.5
         P-Value
                                        0.0000
SRMR (Standardized Root Mean Square Residual)
         Value
                                         0.054
```

A total of 20 participants were unable to complete the simulator driving task, so they are not included in this model...

! All intercepts

! Factor M=0, Var=?

! Residual covariance

Measurement Model 2 for Driving:

MODEL RESULTS	}				
				Two-Tailed	
	Estimate	S.E.	Est./S.E.	P-Value	
DRIVING BY					
CRASH	1.000	0.000	999.000	999.000	
LANE	0.150	0.057	2.608	0.009	
DA_TASK	0.173	0.074	2.348	0.019	
STOP	0.347	0.163	2.124	0.034	
SPEED	0.422	0.138	3.054	0.002	
TIME	0.048	0.043	1.104	0.270	
CDEED WITH	111				
SPEED WIT	-0.023	0.004	-5.393	0 000	
TIME	-0.023	0.004	-5.393	0.000	
Means					
DRIVING	0.000	0.000	999.000	999.000	
DICIVING	0.000	0.000	333.000	333.000	
Intercepts					
LANE	0.815	0.015	53.293	0.000	
DA TASK	0.256	0.013	20.102	0.000	
CRASH	0.859	0.053	16.292	0.000	
STOP	0.205	0.038	5.349	0.000	
SPEED	0.836	0.042	19.687	0.000	
TIME	3.146	0.009	349.081	0.000	
Variances					
DRIVING	0.159	0.062	2.574	0.010	
					For factor coors reliability
Residual Var	ciances				For factor score reliability
LANE	0.027	0.004	6.596	0.000	SAMPLE STATISTICS FOR ESTIMATED
DA_TASK	0.017	0.004	4.613	0.000	FACTOR SCORES
CRASH	0.209	0.055	3.781	0.000	Means
STOP	0.174	0.031	5.575	0.000	DRIVING DRIVING_SE
SPEED	0.210	0.028	7.391	0.000	0.000 0.247
TIME	0.010	0.001	8.639	0.000	Covariances
77 1 1 1 1 1	1 D				Covariances
	al Parameters	1 105	2 065	0 000	DRIVING 0.098
SUMLOAD2	4.578	1.185	3.865	0.000	23.2 . 23.2
SUMERROR	0.647 -0.046	0.067	9.627	0.000	.159
SUMRCOV OMEGA	0.548	0.009 0.076	-5.393 7.166	0.000	$\rho = \frac{.159}{.159 + .247^2} = .723$ Uh-oh
OMEGA	0.540	0.070	7.100	0.000	.1371 .217
STANDARDIZED	MODEL RESULTS				Factor score reliability uses the
STDYX Standar					
				Two-Tailed	factor variance as "true" and the
	Estimate	S.E.	Est./S.E.	P-Value	SE ² of the factor scores (given just
DRIVING BY					above) as "error" (because these
CRASH	0.657	0.117	5.596	0.000	factor scores have error in them
LANE	0.340	0.123	2.767	0.006	anytime reliability is < 1).
DA_TASK	0.470	0.132	3.576	0.000	arrytime reliability is < 1).
STOP	0.315	0.115	2.748	0.006 L	
SPEED	0.345	0.107	3.226	0.001	
TIME	0.185	0.145	1.275	0.202	
	_				
SPEED WITH		0 00-		0.000	
TIME	-0.494	0.090	-5.478	0.000	
NT	armalized Posidur	la for Corr	riancos/Co-	rolations/P-	edual Corrolations
NC		ls for Cova A TASK	riances/Cor CRASH	relations/Re STOP	sidual Correlations SPEED
	DF באזמב		CIVADII	SIOL	OLDED
LANE	0.000				
DA TASK	-0.487	0.000		Local fit look	s mostly ok, with one exception
CRASH		-0.390	0.000 L		a moon on, man one exceptionin
STOP	0.769	0.503	-0.004	0.000	
SPEED		-0.836	0.471	-0.482	
TIME	-1.508	2.067	-0.346	-0.545	

Measurement Model 3 for Attentional Impairment (including Omega)

```
VARIABLE: ! Every variable in THIS MODEL
            USEVARIABLES = lnda lnsa Dscan;
MODEL: ! Measurement model
 Attn BY lnda@1
         lnsa* dscan* (L2-L3); ! 1 marker loading
  [lnda* lnsa* dscan*]; ! All intercepts
  lnda* lnsa* dscan* (E1-E3); ! Residual variances
                             ! Factor M=0, Var=?
  [Attn@0]; Attn* (Fvar);
MODEL CONSTRAINT: ! TO GET OMEGA
NEW(SumLoad2 SumError SumRCov Omega);
SumLoad2 = (1+L2+L3)**2;
SumError = E1+E2+E3;
SumRCov = 2*(0);
! Omega = true variance / total variance
Omega = SumLoad2*Fvar / (SumLoad2*Fvar+SumError+SumRCov);
```

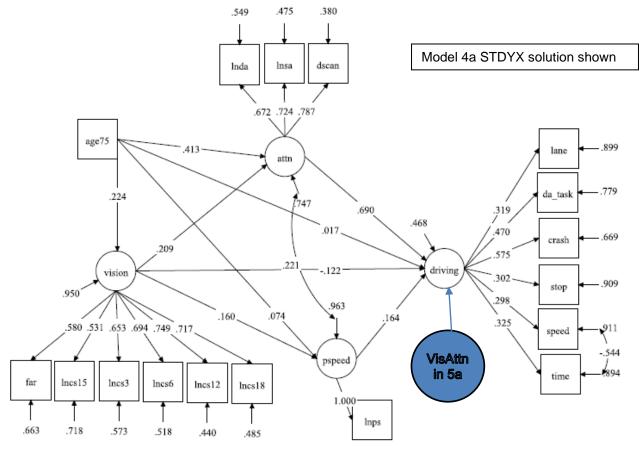
Can you guess why I didn't include the model fit results???

Measurement Model 3 for Attention:

MODEL RESULTS								
		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value			
ATTN	BY							
LNDA		1.000	0.000	999.000	999.000			
LNSA		0.516	0.071	7.275	0.000			
DSCAN		1.107	0.139	7.933	0.000			
Means								
ATTN	ATTN		0.000	999.000	999.000			
Intercept	s							
LNDA		4.354	0.079	54.825	0.000			
LNSA		5.581	0.036	154.256	0.000			
DSCAN		-0.012	0.081	-0.154	0.878			
Variances	3							
ATTN		0.443	0.088	5.008	0.000			
Residual	Varianc	es						
LNDA		0.516	0.068	7.597	0.000			
LNSA		0.081	0.017	4.674	0.000			
DSCAN		0.449	0.086	5.243	0.000			
New/Addit	cional P	arameters						
SUMLO	AD2	6.876	0.960	7.165	0.000			
SUMERF	ROR	1.045	0.102	10.212	0.000			
SUMRCO	VC	0.000	0.000	0.000	1.000			
OMEGA		0.745	0.038	19.728	0.000			
STANDARDIZ	ZED MODE	L RESULTS						
STDYX Star	ndardiza	tion						
					Two-Tailed			
		Estimate	S.E.	Est./S.E.	P-Value			
ATTN	BY							
LNDA		0.680	0.055	12.275	0.000			
LNSA		0.770	0.055	14.087	0.000			
DSCAN		0.740	0.056	13.153	0.000			

For factor score reliability SAMPLE STATISTICS FOR ESTIMATED FACTOR SCORES
Means ATTN ATTN SE
0.000 0.313
Covariances
ATTN 0.345
$\rho = \frac{.443}{.443 + .313^2} = .819$
Factor ecore reliability uses the

Factor score reliability uses the factor variance as "true" and the SE² of the factor scores (given just above) as "error" (because these factor scores have error in them anytime reliability is < 1).


Now we are ready to test the model of interest, **Model 4a** as shown below (drawn by Mplus, made prettier by me). We'll begin with a **saturated structural model** that has main effects of the latent variables only.

```
VARIABLE: ! Every variable in THIS MODEL

USEVARIABLES = lncs15 lncs3 lncs6 lncs12 lncs18 far

lane da_task crash stop speed time

lnda lnsa Dscan age75 lnps;
```



```
MODEL:
            ! Measurement models
 Vision BY far@1 lncs15* lncs3* lncs6* lncs12* lncs18*;
                                                          ! 1 marker loading
  [far* lncs15* lncs3* lncs6* lncs12* lncs18*];
                                                          ! All intercepts
  far* lncs15* lncs3* lncs6* lncs12* lncs18*;
                                                          ! Residual variances
  [Vision@0]; Vision*;
                                                          ! Factor M=0, Var=?
  Driving BY crash@1 da task* lane* stop* speed* time*;
                                                          ! 1 marker loading
  [lane* da task* crash* stop* speed* time*];
                                                          ! All intercepts
  lane* da_task* crash* stop* speed* time*;
                                                          ! Residual variances
  [Driving@0]; Driving*;
                                                           ! Factor M=0, Var=?
  speed WITH time* (ResCov);
                                                           ! Residual covariance
 Attn BY lnda@1 lnsa* dscan*;
                                                           ! 1 marker loading
  [lnda* lnsa* dscan*];
                                                           ! All intercepts
   lnda* lnsa* dscan*;
                                                           ! Residual variances
  [Attn@0]; Attn*;
                                                           ! Factor M=0, Var=?
 Pspeed BY lnps@1; lnps@0;
                                   ! Bring processing speed into likelihood
  [lnps* Pspeed@0]; Pspeed*;
                                   ! Move its variance to a factor, factor mean=0
```

```
! Structural model with all possible main effects
  Vision Attn Pspeed Driving ON Age75*
                                              (Age1-Age4); ! Age --> outcomes
          Attn Pspeed Driving ON Vision* (Vis1-Vis3);
                                                               ! Vision --> outcomes
  Attn WITH Pspeed*;
                                                                ! Res cov for Attn and Pspeed
  Driving ON Pspeed* Attn* (Speed1 Attn1);
                                                                ! Pspeed, Attn --> Driving
MODEL CONSTRAINT:
NEW(AgeVis AgeSpeed AgeAttn);
          = Age1*Vis3; ! Indirect effect of age to vision to driving
AgeSpeed = Age3*Speed1; ! Indirect effect of age to processing speed to driving
AgeAttn = Age2*Attn1; ! Indirect effect of age to attention to driving
MODEL FIT INFORMATION
Number of Free Parameters
                                             58
Loglikelihood
         H0 Value
                                       -1310.811
         HO Scaling Correction Factor
                                         1.1063
           for MLR
                                       -1238.221
         H1 Value
         H1 Scaling Correction Factor
                                         1.0405
Information Criteria
                                        2737.622
         Akaike (AIC)
         Bayesian (BIC)
                                        2913.007
         Sample-Size Adjusted BIC
                                       2729.438
           (n* = (n + 2) / 24)
Chi-Square Test of Model Fit
                                                          Overall model fit is good enough according to
         Value
                                         144.331*
                                                          RMSEA and SRMR (how much worse is our H_0
         Degrees of Freedom
                                            110
         P-Value
                                          0.0156
                                                          model than the perfect saturated H_1 model), but
         Scaling Correction Factor
                                         1.0059
                                                          maybe a little lacking according to CFI and TLI
           for MLR
                                                          (how much better is our H_0 model against the
RMSEA (Root Mean Square Error Of Approximation)
                                                          worst possible null model of no covariances).
         Estimate
                                           0.045
                                           0.021
                                                 0.064
         90 Percent C.I.
                                                          But any misfit must be due to the cross-factor
         Probability RMSEA <= .05
                                          0.635
                                                          measurement model (i.e., covariances of
CFI/TLI
                                                          indicators from different factors not predicted
         CFI
                                           0.936
                                                          accurately) because our structural model is
         TIT
                                           0.921
                                                          saturated—every possible direct relationship
                                                          among the latent variables has been included.
SRMR (Standardized Root Mean Square Residual)
         Value
                                           0.063
UNSTANDARDIZED MODEL RESULTS (TRUNCATED FOR SPACE)
                                                 Two-Tailed
```

Estimate S.E. Est./S.E. P-Value MEASUREMENT MODEL RESULTS GIVEN FIRST (BY STATEMENTS) VISION BY 999.000 FAR 1.000 0.000 999.000 LNCS15 0.481 0.099 4.837 0.000 LNCS3 0.584 0.115 5.076 0.000 0.759 5.583 0.000 LNCS6 0.136 LNCS12 1.265 0.203 6.248 0.000 LNCS18 1.491 0.232 6.416 0.000 DRIVING BY 0.000 999.000 999.000 CRASH 1.000 LANE 0.161 0.066 2.444 0.015 0.197 0.065 3.022 0.003 DA TASK STOP 0.381 0.164 2.330 0.020 SPEED 0.418 0.164 2.540 0.011 TIME 0.097 0.053 1.819 0.069 ATTN BY 1.000 0.000 999.000 999.000 LNDA 0.061 8.000 0.000 0.491 LNSA DSCAN 1.192 0.170 7.022 0.000 PSPEED BY 1.000 0.000 999.000 999.000 LNPS

REGRESSION PATHS	GIVEN NEXT (ON	STATEMEN	TS)	
ATTN ON VISION	0.287	0.137	2.095	0.036
PSPEED ON VISION	0.167	0.100	1.658	0.097
	0.107	0.100	1.000	0.037
DRIVING ON VISION	-0.089	0 109	-0.814	0.415
PSPEED	0.114	0.083		
ATTN	0.365	0.127	2.884	0.004
VISION ON				
AGE75	0.024	0.011	2.187	0.029
ATTN ON AGE75	0.059	0.014	4.393	0.000
PSPEED ON				
AGE75 DRIVING ON	0.008	0.008	0.988	0.323
AGE75	0.001	0.011	0.119	0.905
COVARIANCES GIVE	N LAST (WITH ST	ATEMENTS)		
ATTN WITH	•			
PSPEED SPEED WITH	0.061	0.027	2.292	0.022
TIME	-0.025	0.004	-5.512	0.000
INDIRECT EFFECTS	REQUESTED USING	G MODEL C	ONSTRAINT	
New/Additional		0 000	0.020	0.406
AGEVIS AGESPEED	-0.002 0.001	0.003		
AGEATTN			2.507	
STANDARDIZED MOD	EL RESULTS (TRUI	NCATED FO	R SPACE)	
STDYX Standardiz	ation			Two-Tailed
	Estimate	S.E.	Est./S.E.	
VISION BY	0 500	0 060	0 424	0.000
FAR LNCS15	0.580 0.531	0.062 0.076		
LNCS3	0.653	0.061	10.646	0.000
LNCS6 LNCS12	0.694 0.749	0.059 0.051		
LNCS12 LNCS18	0.749	0.031		
DRIVING BY	0 575	0 107	5 272	0.000
CRASH LANE	0.575 0.319	0.107 0.130		
DA_TASK	0.470	0.100		
STOP	0.302	0.115	2.630	0.009
SPEED TIME	0.298 0.325	0.102 0.132		
ATTN BY				
LNDA LNSA	0.672 0.724	0.058 0.053		0.000
DSCAN	0.787	0.045	17.608	0.000
PSPEED BY LNPS	1.000	0 000	999.000	999 000
DRIVING ON	1.000	0.000	999.000	999.000
VISION	-0.122	0.148		
PSPEED ATTN	0.164 0.690	0.120 0.149		
PSPEED ON				
VISION ATTN ON	0.160	0.094	1.715	0.086
VISION	0.209	0.096	2.191	0.028
DRIVING ON	0.017	0 140	0 110	0.006
AGE75 VISION ON	0.017	0.148	0.118	0.906
AGE75	0.224	0.087	2.582	0.010
ATTN ON AGE75	0.413	0.081	5.085	0.000
PSPEED ON				
AGE75 ATTN WITH	0.074	0.075	0.986	0.324
PSPEED SPEED WITH	0.221	0.088	2.523	0.012
TIME	-0.544	0.090	-6.061	0.000

```
R-SQUARE
                                                   Two-Tailed
    Latent
                  Estimate
                                 S.E. Est./S.E.
   Variable
                                                    P-Value
                     0.050
                               0.039 1.291
                                                      0.197
   VISION
                     0.532
                               0.151
                                           3.526
                                                      0.000
   DRIVING
                      0.253
                                 0.077
                                            3.264
                                                       0.001
   ATTN
                                 0.032
   PSPEED
                      0.037
                                            1.129
                                                       0.259
! Reduced structural model 4b (no age or vision --> driving)
                                                            ! Age --> outcomes, not driving
  Vision Attn Pspeed ON Age75*
                                       (Age2-Age4)
          Attn Pspeed ON Vision* (Vis2-Vis3);
                                                            ! Vision --> outcomes, not driving
  Attn WITH Pspeed*;
                                                            ! Res cov for Attn and Pspeed
  Driving ON Pspeed* Attn* (Speed1 Attn1);
                                                            ! Pspeed, Attn --> Driving
                                                          Did constraining these two structural paths to 0
MODEL FIT INFORMATION
Number of Free Parameters
                                               56
                                                          make the model worse?
Loglikelihood
                                                          Rescaled -2\Delta LL(2) = 0.646, p = .72, so no
         H0 Value
                                        -1311.286
         HO Scaling Correction Factor
                                          1.0933
                                                          This model comparison is the appropriate way to
           for MLR
         H1 Value
                                        -1238.221
                                                          test changes to the structural model, whose job is
         H1 Scaling Correction Factor
                                           1.0405
                                                          to reproduce the covariance among the latent
           for MLR
                                                          factors and any observed predictors (but not
Information Criteria
                                                          among any observed predictors themselves).
         Akaike (AIC)
                                         2734.572
         Bayesian (BIC)
                                         2903.909
         Sample-Size Adjusted BIC
                                         2726.670
                                                          Relying on good global model fit (which will mostly
           (n* = (n + 2) / 24)
                                                          reflect the measurement models) is not sufficient
Chi-Square Test of Model Fit
                                                          to say a structural model fits. Instead, one should
                                          144.090*
          Value
         Degrees of Freedom
                                             112
                                                          compare any overidentified structural model (with
         P-Value
                                           0.0221
                                                          paths missing) to the saturated structural model to
         Scaling Correction Factor
                                           1.0142
                                                          see if the fit is "not worse". One might compute a
           for MLR
RMSEA (Root Mean Square Error Of Approximation)
                                                          new version of the H1 model that reflects a
                                            0.043
         Estimate
                                                          saturated structural model (and a new null model
                                            0.018
                                                   0.063
         90 Percent C.I.
                                                          that reflects an independent structural model) to be
         Probability RMSEA <= .05
                                            0.691
                                                          used in computing structural model fit indices...
CFI/TLI
                                            0.940
                                            0.927
                                                          We will continue with a saturated structural model
```

What if we wanted to test a latent variable interaction? Model 5a (same measurement model as in Model 4a, including a full structural model with additions shown below)

Note that latent variable interactions can only be model predictors (and they cannot have covariances)

0.063

in the model variants that follow...

SRMR (Standardized Root Mean Square Residual)

Value

```
ESTIMATOR = MLR;
ANALYSIS:
           TYPE = RANDOM; ALGORITHM = INTEGRATION;
                                                     ! New estimation options needed
! Full structural model
  Vision Attn Pspeed Driving ON Age75*
                                        (Age1-Age4);
                                                     ! Age --> outcomes
        Attn Pspeed Driving ON Vision* (Vis1-Vis3);
                                                     ! Vision --> outcomes
 Attn WITH Pspeed*;
                                                     ! Res cov for Attn and Pspeed
 Driving ON Pspeed* Attn*
                           (Speed1 Attn1);
                                                     ! Pspeed, Attn --> Driving
! Interaction between two latent variables (would be same if one variable was observed)
 VisAttn | Vision XWITH Attn; ! VisAttn = new latent variable interaction
 Driving ON VisAttn* (VxA);
                                  ! Latent variable interaction --> Driving
MODEL CONSTRAINT: ! Original latent factor variance of attn = .443, of vision = .224
NEW (V4low V4high A4low A4high);
 V4low = Vis3 - VxA*SQRT(.443); ! Vision slope for -1SD attn
 V4high = Vis3 + VxA*SQRT(.443); ! Vision slope for +1SD attn
 A4low = Attn1 - VxA*SQRT(.224); ! Attn slope for -1SD vision
 A4high = Attn1 + VxA*SQRT(.224); ! Attn slope for -+1SD vision
```

59
-1310.261
1.1066
2738.522
2916.931
2730.197

The absolute model fit indices have disappeared once we've used numeric integration (no H_1 saturated covariance matrix to come back to anymore). STDYX disappears for the same reason.

New structural model output only—note that the VisAttn interaction is related only to driving:

UNSTANDARDI	ZED	MODEL RESULTS				
					Two-Tailed	
		Estimate	S.E.	Est./S.E.	P-Value	
ATTN	ON					
VISION		0.305	0.142	2.140	0.032	
PSPEED	ON					
VISION		0.168	0.101	1.662	0.096	
DRIVING	ON					
VISION		-0.106	0.114	-0.924	0.355	simple vision slope at attn=0
PSPEED		0.118	0.083	1.423	0.155	
ATTN		0.363	0.130	2.785	0.005	simple attn slope at vision=0
VISATTN	1	0.139	0.142	0.978	0.328	n.s. interaction
VISION	ON					
AGE75		0.024	0.011	2.188	0.029	
ATTN	ON					
AGE75		0.059	0.014	4.399	0.000	
PSPEED	ON					
AGE75		0.008	0.008	0.982	0.326	
DRIVING	ON					
AGE75		0.002	0.011	0.135	0.892	
	TH	0.000				
PSPEED		0.060	0.027	2.222	0.026	
/- 131.1	_	_				
New/Additio	onal		0.465			
V4LOW		-0.198	0.167	-1.181		simple vision slope at attn=-1SD
V4HIGH		0.013	0.126	-0.105	0.916	simple vision slope at attn=+1SD
A4LOW		0.297	0.139	2.134	0.033	
A4HIGH		0.428	0.153	2.793	0.005	simple attn slope at vision=+1SD
QTDVV Q+and	dard.	ization				
STDYX Stand	dard	ization			Two-Tailed	
STDYX Stand	dard		T P	Fc+ /C F	Two-Tailed	
		ization Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	
ATTN	dard: ON	Estimate			P-Value	
			S.E.	Est./S.E. 2.233		
ATTN VISION	ON	Estimate			P-Value	
ATTN VISION PSPEED		Estimate 0.220	0.099	2.233	P-Value 0.026	
ATTN VISION	ON	Estimate			P-Value	
ATTN VISION PSPEED VISION	ON	Estimate 0.220	0.099	2.233	P-Value 0.026	
ATTN VISION PSPEED VISION DRIVING	ON	0.220 0.160	0.099	2.233	P-Value 0.026 0.085	
ATTN VISION PSPEED VISION DRIVING VISION	ON	0.220 0.160	0.099 0.093 0.155	2.233 1.720 -0.939	P-Value 0.026 0.085	
ATTN VISION PSPEED VISION DRIVING VISION PSPEED	ON	0.220 0.160 -0.145 0.170	0.099 0.093 0.155 0.120	2.233 1.720 -0.939 1.417	P-Value 0.026 0.085 0.348 0.157	
ATTN VISION PSPEED VISION DRIVING VISION PSPEED ATTN	ON ON	0.220 0.160 -0.145 0.170 0.692	0.099 0.093 0.155 0.120 0.152	2.233 1.720 -0.939 1.417 4.564	P-Value 0.026 0.085 0.348 0.157 0.000	
ATTN VISION PSPEED VISION DRIVING VISION PSPEED	ON ON	0.220 0.160 -0.145 0.170	0.099 0.093 0.155 0.120	2.233 1.720 -0.939 1.417	P-Value 0.026 0.085 0.348 0.157	
ATTN VISION PSPEED VISION DRIVING VISION PSPEED ATTN	ON ON	0.220 0.160 -0.145 0.170 0.692	0.099 0.093 0.155 0.120 0.152	2.233 1.720 -0.939 1.417 4.564	P-Value 0.026 0.085 0.348 0.157 0.000	
ATTN VISION PSPEED VISION DRIVING VISION PSPEED ATTN VISATTN VISION	ON ON	0.220 0.160 -0.145 0.170 0.692 0.125	0.099 0.093 0.155 0.120 0.152 0.126	2.233 1.720 -0.939 1.417 4.564 0.999	P-Value 0.026 0.085 0.348 0.157 0.000 0.318	
ATTN VISION PSPEED VISION DRIVING VISION PSPEED ATTN VISATTN	ON ON	0.220 0.160 -0.145 0.170 0.692	0.099 0.093 0.155 0.120 0.152	2.233 1.720 -0.939 1.417 4.564	P-Value 0.026 0.085 0.348 0.157 0.000	
ATTN VISION PSPEED VISION DRIVING VISION PSPEED ATTN VISATTN VISION AGE75	ON ON	0.220 0.160 -0.145 0.170 0.692 0.125	0.099 0.093 0.155 0.120 0.152 0.126	2.233 1.720 -0.939 1.417 4.564 0.999	P-Value 0.026 0.085 0.348 0.157 0.000 0.318	
ATTN VISION PSPEED VISION DRIVING VISION PSPEED ATTN VISATTN VISION AGE75 ATTN	ON ON	0.220 0.160 -0.145 0.170 0.692 0.125	0.099 0.093 0.155 0.120 0.152 0.126	2.233 1.720 -0.939 1.417 4.564 0.999	P-Value 0.026 0.085 0.348 0.157 0.000 0.318	
ATTN VISION PSPEED VISION DRIVING VISION PSPEED ATTN VISATTN VISION AGE75	ON ON	0.220 0.160 -0.145 0.170 0.692 0.125	0.099 0.093 0.155 0.120 0.152 0.126	2.233 1.720 -0.939 1.417 4.564 0.999	P-Value 0.026 0.085 0.348 0.157 0.000 0.318	
ATTN VISION PSPEED VISION DRIVING VISION PSPEED ATTN VISATTN VISION AGE75 ATTN	ON ON	0.220 0.160 -0.145 0.170 0.692 0.125	0.099 0.093 0.155 0.120 0.152 0.126	2.233 1.720 -0.939 1.417 4.564 0.999	P-Value 0.026 0.085 0.348 0.157 0.000 0.318	
ATTN VISION PSPEED VISION DRIVING VISION PSPEED ATTN VISATTN VISION AGE75 ATTN AGE75	ON ON ON ON ON	0.220 0.160 -0.145 0.170 0.692 0.125	0.099 0.093 0.155 0.120 0.152 0.126	2.233 1.720 -0.939 1.417 4.564 0.999	P-Value 0.026 0.085 0.348 0.157 0.000 0.318	
ATTN VISION PSPEED VISION DRIVING VISION PSPEED ATTN VISATTN VISION AGE75 ATTN AGE75 PSPEED	ON ON ON ON ON	0.220 0.160 -0.145 0.170 0.692 0.125	0.099 0.093 0.155 0.120 0.152 0.126 0.088	2.233 1.720 -0.939 1.417 4.564 0.999 2.594 5.071	P-Value 0.026 0.085 0.348 0.157 0.000 0.318 0.009	
ATTN VISION PSPEED VISION DRIVING VISION PSPEED ATTN VISATTN VISION AGE75 ATTN AGE75 PSPEED	ON ON ON ON ON	0.220 0.160 -0.145 0.170 0.692 0.125	0.099 0.093 0.155 0.120 0.152 0.126 0.088	2.233 1.720 -0.939 1.417 4.564 0.999 2.594 5.071	P-Value 0.026 0.085 0.348 0.157 0.000 0.318 0.009	
ATTN VISION PSPEED VISION DRIVING VISION PSPEED ATTN VISATTN VISION AGE75 ATTN AGE75 PSPEED AGE75	ON ON ON ON ON ON ON	0.220 0.160 -0.145 0.170 0.692 0.125	0.099 0.093 0.155 0.120 0.152 0.126 0.088	2.233 1.720 -0.939 1.417 4.564 0.999 2.594 5.071	P-Value 0.026 0.085 0.348 0.157 0.000 0.318 0.009	
ATTN VISION PSPEED VISION DRIVING VISION PSPEED ATTN VISATTN VISION AGE75 ATTN AGE75 PSPEED AGE75 DRIVING	ON ON ON ON ON ON ON	0.220 0.160 -0.145 0.170 0.692 0.125 0.227 0.413	0.099 0.093 0.155 0.120 0.152 0.126 0.088 0.081	2.233 1.720 -0.939 1.417 4.564 0.999 2.594 5.071	P-Value 0.026 0.085 0.348 0.157 0.000 0.318 0.009 0.000	
ATTN VISION PSPEED VISION DRIVING VISION PSPEED ATTN VISATTN VISION AGE75 ATTN AGE75 PSPEED AGE75 DRIVING AGE75	ON ON ON ON ON ON ON	0.220 0.160 -0.145 0.170 0.692 0.125 0.227 0.413	0.099 0.093 0.155 0.120 0.152 0.126 0.088 0.081	2.233 1.720 -0.939 1.417 4.564 0.999 2.594 5.071	P-Value 0.026 0.085 0.348 0.157 0.000 0.318 0.009 0.000	

What would have happened if we used the mean of each person's factor score distribution from the single-factor models as observed constructs instead (i.e., replaced the latent circles with observed boxes)? Let's compare two possible ways of doing this—with or without reliability correction.

```
TITLE: SEM Example for Driverscan using Single Factor Scores;
DATA:
                                     ! EAP factor scores merged into original data
 FILE = SEMfactorscores.csv;
  TYPE = INDIVIDUAL; FORMAT = FREE; ! Defaults
VARIABLE:
! List of ALL variables in data file
  NAMES = PersonID sex age75 lncs15 lncs3 lncs6 lncs12 lncs18 far lnps
          lnda lnsa Dscan lane da task crash stop speed time
          VisFact DrivFact AttnFact; ! New factor scores
! Variables to be analyzed in this model
 USEVARIABLE = age75 lnps VisFact DrivFact AttnFact;
! Missing data identifier
 MISSING = ALL (-9999);
! ID variable;
  IDVARIABLE = PersonID;
ANALYSIS:
           ESTIMATOR = MLR:
            TYPE = RANDOM; ALGORITHM = INTEGRATION;
                                                      ! New estimation options for latent interaction
OUTPUT:
            STDYX RESIDUAL; ! Standardized model, local fit
            SAMPSTAT;
                                ! Get descriptive stats for variables
```

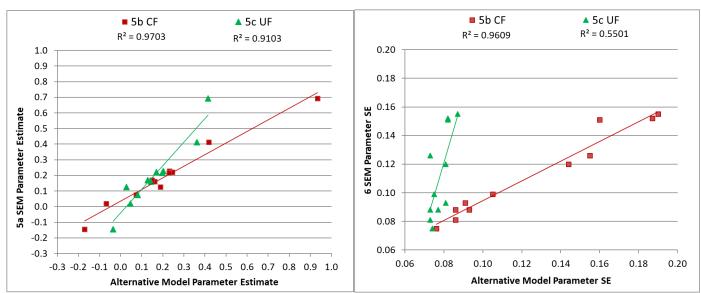
Model 5b: Using Reliability-Corrected Single Factor Scores (and Latent Interaction)

```
! Measurement models for "factors" (factor mean=0 used to do centering)
! "Res" labels used to Incorporate factor score unreliability
 Vision BY VisFact@1; Vision*; VisFact* (ResVis); [Vision@0 VisFact*];
                                  AttnFact* (ResAttn); [Attn@0
         BY AttnFact@1; Attn*;
 Pspeed BY lnps@1; Pspeed*; lnps*
                                           (ResPspd); [Pspeed@0 lnps*];
  Driving BY DrivFact@1; Driving*; DrivFact* (ResDriv); [Driving@0 DrivFact*];
  VisAttn | Vision XWITH Attn; ! Latent interaction term (to address unreliability)
! Structural model among "factors"
  Vision Attn Pspeed Driving ON Age75* (Age1-Age4); ! Age --> outcomes
        Attn Pspeed Driving ON Vision* (Vis1-Vis3); ! Vision --> outcomes
 Attn WITH Pspeed*;
                                                      ! Res cov for Attn and Pspeed
  Driving ON Pspeed* Attn* (Speed1 Attn1);
                                                     ! Pspeed, Attn --> Driving
  Driving ON VisAttn* (VxA);
                                                      ! Interaction --> Driving
MODEL CONSTRAINT: ! Factor score variance of attn = .345, of vision = .186
NEW (V4low V4high A4low A4high);
  V4low = Vis3 - VxA*SQRT(.345);
                                  ! Vision slope for -1SD attn
 V4high = Vis3 + VxA*SQRT(.345); ! Vision slope for +1SD attn
  A4low = Attn1 - VxA*SQRT(.186); ! Attn slope for -1SD vision
 A4high = Attn1 + VxA*SQRT(.186); ! Attn slope for -+1SD vision
! (1-Reliability)*(factorvar+(SE*SE)) to fix residual variances to "error" variance
  ResVis = (1-.856)*(0.224+(.194*.194));
  ResAttn=(1-.819)*(0.443+(.313*.313));
  ResPspd=0; ! Processing speed assumed perfectly reliable
  ResDriv=(1-.723)*(0.159+(.247*.247));
! Processing speed assumed perfectly reliable
```

Model 5c: Using Uncorrected Single Factor Scores (Reliability=1 for all; changes to code below)

```
VARIABLE: ! Variables to be analyzed in this model
    USEVARIABLE = age75 lnps VisFact DrivFact AttnFact VisAttn;

DEFINE:    VisAttn = VisFact * AttnFact; ! Interaction is now an observed variable instead of latent
ANALYSIS: ESTIMATOR = MLR; ! Integration no longer needed


MODEL: ! All measurement and structural model code is the same as 5b after removing latent interaction
!VisAttn | Vision XWITH Attn; ! Latent interaction term removed (is now observed)

MODEL CONSTRAINT:
! Residual variances as "error" variances now ALL fixed to 0
ResVis=0;
ResAttn=0;
ResPspd=0;
ResPspd=0;
ResPriv=0;
```

Model fit is acceptable for Model 5c (DF=3), but not available for Model 5b (given latent interaction)

What about the results? Let's compare the standardized solution across our 3 options:

	Estimates			Stand	lard Erro	ors	p.	P-Values		
	5a	5b	5c	5a	5b	5c	5a	5b	5c	
MODEL	SEM	CF	UF	SEM	CF	UF	SEM	CF	UF	
Age>										
VISION	.227	.232	.203	.088	.086	.077	.009	.007	.008	
ATTN	.413	.418	.362	.081	.086	.073	.000	.000	.000	
PSPEED	.074	.073	.081	.075	.076	.074	.327	.337	.275	
DRIVING	.020	069	.046	.151	.160	.082	.894	.665	.576	
Vision>										
PSPEED	.160	.162	.144	.093	.091	.081	.085	.076	.077	
ATTN	.220	.246	.170	.099	.105	.075	.026	.019	.022	
ATTN<>PSPEED	.217	.230	.198	.088	.093	.073	.014	.014	.007	
DRIVING <										
PSPEED	.170	.150	.129	.120	.144	.081	.157	.299	.110	
VISION	145	172	035	.155	.190	.087	.348	.364	.686	
ATTN	.692	.934	.415	.152	.187	.082	.000	.000	.000	
VISATTN	.125	.189	.028	.126	.155	.073	.318	.223	.705	
R2 Latent										
Variable										
VISION	.052	.054	.041	.040	.040	.031	.195	.179	.186	
ATTN	.260	.283	.185	.081	.091	.060	.001	.002	.002	
PSPEED	.037	.037	.032	.032	.032	.027	.258	.245	.237	
DRIVING	.551	.872	.226	.147	.248	.061	.000	.000	.000	

From our informal comparison of methods, it looks like reliability-corrected version (model 5b) of the full SEM model 5a does a better job of reproducing parameter estimates (left figure) and standard errors (right figure) than the uncorrected version (model 5c). Note that a single estimate of reliability cannot be used as demonstrated here when factors are created using IRT/IFA, in which reliability is trait-specific instead (although it may be possible to trick Mplus into doing so, I'm not aware of any work on this).

For an example SEM results section, see Hoffman et al. (2005) reference given on page 1.