Graded Response Polytomous IFA-IRT Models in Mplus v. 8.4

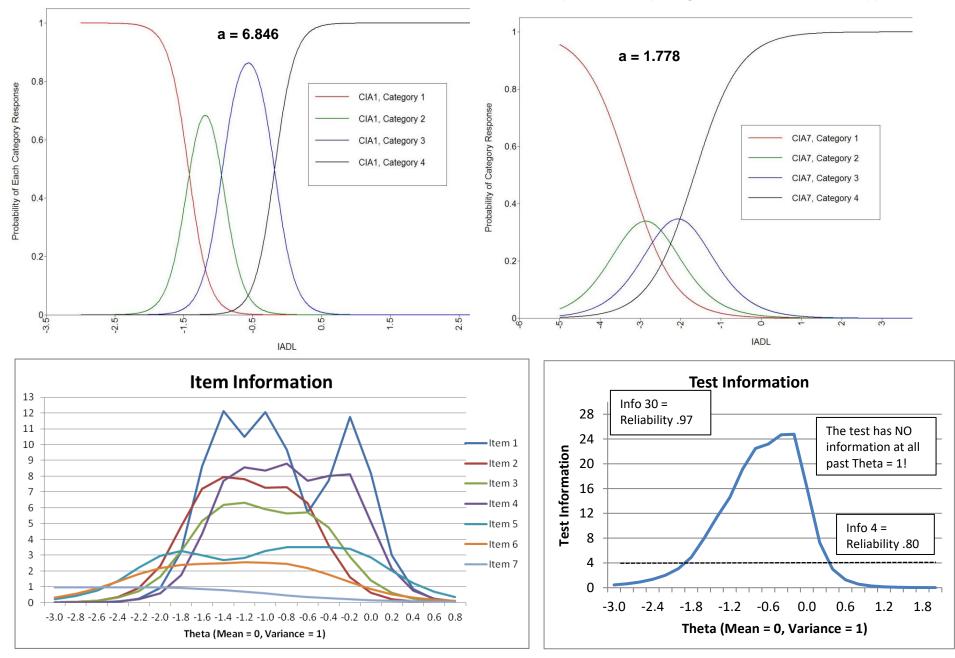
Example data: 634 older adults (age 80–100) self-reporting on 7 items assessing the Instrumental Activities of Daily Living (IADL) as follows:

1. Housework (cleaning and laundry)	ltem	0=Can't Do It	1=Big Problems	2=Some Problems	3=Can Do It
2. Bedmaking	1	0.09	0.08	0.26	0.58
3. Cooking	2	0.07	0.04	0.12	0.77
4. Everyday shopping	3	0.09	0.05	0.15	0.72
5. Getting to places outside of walking distance	4	0.10	0.09	0.19	0.62
6. Handling banking and other business	5	0.06	0.16	0.21	0.57
7. Using the telephone	6	0.06	0.08	0.12	0.74
	7	0.01	0.03	0.08	0.88

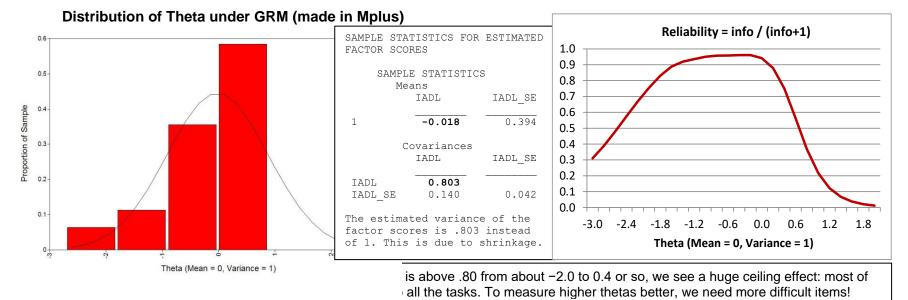
Graded Response Model Syntax for 2PL-ish model (left) and 1PL-ish model (bottom right) using ML and a logit scale:

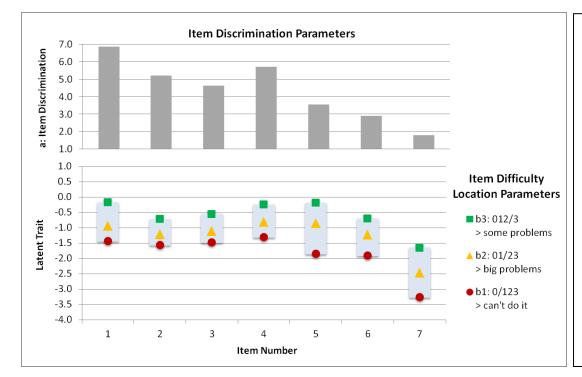
TITLE: Assess polytomous items using GRM under full-info ML	! (GRM input continues)
DATA: FILE = Example6a.csv; ! Don't need path if in same directory	
FORMAT = free; ! Default	MODEL CONSTRAINT: ! Identification here so can use below
TYPE = INDIVIDUAL; ! Default	<pre>FactMean=0; FactVar=1;</pre>
VARIABLE: NAMES = case dial-dia7 cial-cia7; ! All vars in data	! Creating new IRT parameters
USEVARIABLES = cial-cia7; ! All vars in model	! A = discrimination, B1=y>0, B2=y>1, B3=y>2
CATEGORICAL = cial-cia7; ! All ordinal outcomes	NEW(A_I1-A_I7 B1_I1-B1_I7 B2_I1-B2_I7 B3_I1-B3_I7);
MISSING = ALL (99999); ! Missing value code	! DO (begin, end), replace # with index
IDVARIABLE = case; ! Person ID variable	! Discriminations
	DO (1,7) A_I# = L_I# * SQRT(FactVar);
ANALYSIS: TYPE = GENERAL; ! Default	! Difficulties
ESTIMATOR = ML; LINK = LOGIT; ! Full-info ML in logits	DO (1,7) B1_I# = (T1_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar));
CONVERGENCE = 0.0000001; ! For OS comparability	DO (1,7) B2_I# = (T2_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar));
	<pre>DO (1,7) B3_I# = (T3_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar));</pre>
OUTPUT: STDYX; ! Standardized solution	
RESIDUAL TECH10; ! Local fit info	NORTH - I Constructional Constant Restored Landau (some landing for all items)
CAMEDARA . CAME - ESCORES	MODEL: ! Constrained Graded Response Model (same loading for all items)
SAVEDATA: SAVE = FSCORES; ! Save factor scores (thetas) FILE = IADL 2PLThetas.dat; ! File factor scores saved to	! Factor loadings constrained equal to single label
MISSFLAG = 99999; Missing data value in file	IADL BY cial-cia7* (L);
MISSING - 99999; MISSING data value in file	! Item thresholds all estimated and labeled
PLOT: TYPE = PLOT1; ! PLOT1 gets you sample descriptives	[cial\$1-cia7\$1*] (T1 I1-T1 I7);
TYPE = PLOT2; ! PLOT2 gets you the IRT-relevant curves	[cial\$2-cia7\$2*] (T2 I1-T2 I7);
TYPE = PLOT3; ! PLOT3 gets you descriptives for theta	[cia1\$3-cia7\$3*] (T3 I1-T3 I7);
	! Will become Factor mean=0 and variance=1 for identification
MODEL: ! Original Graded Response Model (separate loadings per item)	[IADL*] (FactMean); IADL* (FactVar);
! Factor loadings all estimated and labeled	MODEL CONSTRAINT: ! Identification here so can use below
IADL BY cial-cia7* (L_I1-L_I7);	<pre>FactMean=0; FactVar=1;</pre>
! Item thresholds all estimated and labeled	NEW(L I1-L I7); DO (1,7) L I# = L; ! For 1PL model
! If any listed are not observed, Mplus will throw an error	! A = discrimination, $B1=y>0$, $B2=y>1$, $B3=y>2$
[cial\$1-cia7\$1*] (T1 I1-T1 I7);	NEW(A I1-A I7 B1 I1-B1 I7 B2 I1-B2 I7 B3 I1-B3 I7);
[cia1\$2-cia7\$2*] (T2_I1-T2_I7);	! Discriminations
[cia1\$3-cia7\$3*] (T3_I1-T3_I7);	DO (1,7) A_I# = L_I# * SQRT(FactVar);
! Will become Factor mean=0 and variance=1 for identification	! Difficulties
[IADL*] (FactMean);	DO (1,7) B1_I# = (T1_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar));
IADL* (FactVar);	<pre>DO (1,7) B2_I# = (T2_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar));</pre>
	DO (1,7) B3_I# = (T3_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar));

Graded Response Model 2PL-ish Model Fit (left) and 1PLish Model Fit (right) using ML logit:


MODEL FIT INFORMATION		MODEL FIT INFORMATION	
Number of Free Parameters	28	Number of Free Parameters	22
Loglikelihood		Loglikelihood	
HO Value	-2523.585	H0 Value	-2591.310
Information Criteria		Information Criteria	
Akaike (AIC)	5103.171	Akaike (AIC)	5226.620
Bayesian (BIC)	5227.828	Bavesian (BIC)	5324.565
Sample-Size Adjusted BIC	5138.931	Sample-Size Adjusted BIC	5254.717
$(n^* = (n + 2) / 24)$	5155.551	$(n^* = (n + 2) / 24)$	0201.717
Chi-Square Test of Model Fit for the (Ordinal) Outcomes**	Binary and Ordered Categorical	Chi-Square Test of Model Fit for the (Ordinal) Outcomes**	e Binary and Ordered Categorical
Pearson Chi-Square		Pearson Chi-Square	
Value	1876.488	Value	2650.119
Degrees of Freedom	16317	Degrees of Freedom	16321
P-Value	1.0000	P-Value	1.0000
Likelihood Ratio Chi-Squar	e	Likelihood Ratio Chi-Squa	re
Value	676.937	Value	803.028
Degrees of Freedom	16317	Degrees of Freedom	16321
P-Value	1.0000	P-Value	1.0000
** Of the 48600 cells in the latent were deleted in the calculation of	•	 ** Of the 48600 cells in the latent were deleted in the calculation This error message indicates that t on the same scale. We need to tes 	of chi-square due to extreme values. hese 2 sets of chi-squares are not

Does the 2PL-ish version of the GRM (original with separate loadings) fit better than the 1PL-ish version (with same loading)?


 $-2523.585^{*}-2 = 5047.170$ $-2\Delta LL = 135.45$, df = 6, p < .0001 $-2591.310^{*}-2 = 5182.620$ AIC and BIC are smaller for original GRM with separate loadings, too


<u>3 differently scaled solutions from ML logit—all provide the exact same predictions!</u>

UNSTANDARDIZI	ED MODEL RESU	ULTS (IFA			(output from	same model o	continue	d)	
	Estimate	SE	T Est./S.E.	vo-Tailed P-Value					
	HOCIMACC	0.11.		i varao	RESULTS FROM	IRT MODEL G	IVEN BY I		-
ACTOR LOADINGS	= CHANGE IN LOG	IT(Y) PER	UNIT CHANGE	IN THETA		Estimate	C F	Est./S.E.	Two-Tailed P-Value
ADL BY						ESCIMACE	0.0.	L3C./J.L.	I VALUE
CIA1	6.846	0.841	8.140	0.000	New/Additional P	aramotoro			
CIA2	5.200	0.555	9.363	0.000	DISCRIMINATIONS :			יע זעאדווד	
CIA3	4.613	0.456	10.119	0.000		6.846	0.841	8.140	0.000
CIA4	5.701	0.612	9.312	0.000	A_I1	5.200			0.000
CIA5	3.556	0.298	11.950	0.000	A_I2		0.555	9.363	
CIA6	2.897	0.261	11.094	0.000	A_I3	4.613	0.456	10.119	0.000
CIA7	1.778	0.209	8.512	0.000	A_14	5.701	0.612	9.312	0.000
					A_I5	3.556	0.298	11.950	0.000
HRESHOLDS = EXH	PECTED LOGIT(Y=0) WHEN THE	TA IS 0 (ME)	AN OF SAMPLE)	A_I6	2.897	0.261	11.094	0.000
CIA1\$1	-9.808	, 1.138	-8.620	0.000	A_17	1.778	0.209	8.512	0.000
CIA1\$2	-6.460	0.799	-8.088	0.000					
CIA1\$3	-1.238	0.384	-3.226	0.001	DIFFICULTIES = T				
CIA2\$1	-8.145	0.794	-10.257	0.000	B1_I1	-1.433	0.079	-18.127	0.000
CIA2\$2	-6.313	0.618	-10.219	0.000	B1_I2	-1.566	0.088	-17.807	0.000
CIA2\$3	-3.737	0.441	-8.480	0.000	B1_I3	-1.483	0.086	-17.205	0.000
CIA3\$1	-6.841	0.613	-11.162	0.000	B1_I4	-1.308	0.076	-17.175	0.000
CIA3\$2	-5.194	0.480	-10.810	0.000	B1_I5	-1.850	0.104	-17.748	0.000
CIA3\$3	-2.572	0.330	-7.792	0.000	B1_I6	-1.911	0.120	-15.976	0.000
CIA4\$1	-7.454	0.747	-9.975	0.000	B1_I7	-3.268	0.320	-10.223	0.000
CIA4\$1 CIA4\$2	-4.635	0.514	-9.026	0.000	B2 I1	-0.944	0.059	-16.004	0.000
	-4.635				B2 I2	-1.214	0.072	-16.870	0.000
CIA4\$3		0.327	-4.366	0.000	B2 I3	-1.126	0.070	-16.068	0.000
CIA5\$1	-6.578	0.494	-13.314	0.000	B2 I4	-0.813	0.058	-14.128	0.000
CIA5\$2	-3.041	0.273	-11.155	0.000	B2_I5	-0.855	0.063	-13.574	0.000
CIA5\$3	-0.681	0.203	-3.354	0.001	B2_I6	-1.237	0.083	-14.933	0.000
CIA6\$1	-5.538	0.411	-13.486	0.000	B2 I7	-2.474	0.215	-11.507	0.000
CIA6\$2	-3.583	0.285	-12.554	0.000	B3 I1	-0.181	0.049	-3.714	0.000
CIA6\$3	-2.044	0.219	-9.344	0.000	B3 I2	-0.719	0.055	-13.083	0.000
CIA7\$1	-5.810	0.472	-12.315	0.000	B3 I3	-0.558	0.054	-10.386	0.000
CIA7\$2	-4.398	0.322	-13.673	0.000	B3 I4	-0.250	0.050	-5.029	0.000
CIA7\$3	-2.951	0.237	-12.457	0.000	B3 I5	-0.192	0.054	-3.548	0.000
					B3 I6	-0.705	0.063	-11.169	0.000
USING RESULTS	S FROM IFA MC	DEL:			B3_10 B3_17	-1.660	0.136	-12.244	0.000
					^{D3} ⁻¹	1.000	0.130	12.211	0.000
FA model: Logit	t(y=1) = -thresh	old + load	ing(Theta)		USING RESULTS	FROM TRT M	DEL WHEN	I THETA~N	(0.1):
	ected logit of ((*/-/ •
				t for (y=1) instead	IRT model: Logit	$(\mathbf{v}) = \mathbf{a}(thete)$	- difficult	.v)	
Loading = regres	ssion of item lo	git on The	ta		a = discriminati				
					b = difficulty (old/loading
	responses, the s			Ls:	5 - arriturey (.	LOCALION ON IA	Sent metric	, - chresh	ora/ roauring
	23) = -threshold								
Logit(y= 01 vs 23) = -threshold\$2 + loading(Theta) Logit(y= 012 vs 3) = -threshold\$3 + loading(Theta)					For A-astagors -	enoneer +he	ubmodel e	ook like +1	hie·
					For 4-category re				
					\$1 Logit(y= 0 vs 123) = a(Theta - difficulty\$1) \$2 Logit(y= 01 vs 23) = a(Theta - difficulty\$2)				
EXAMPLE IFA Model FOR CIA1:									
\$1 Logit(CIA1=0 vs 123)= 9.808 + 6.846(Theta) > if Theta=0, prob=.99994					\$3 Logit(y= 012 -	vs 3) = a(Theta	a - difficu	iity\$3)	
	1 vs 23) = 6.460								
					EXAMPLE IFA Mode				
\$3 Logit(CIA1=012 vs 3)= 1.238 + 6.846(Theta) → if Theta=0, prob=.77522					\$1 Logit(CIA1=0 vs 123)= 6.846(Theta + 1.433)				
					<pre>\$2 Logit(CIA1=01 vs 23)= 6.846(Theta + 0.944) \$3 Logit(CIA1=012 vs 3)= 6.846(Theta + 0.181)</pre>				

Mplus Category Response Curves – Item 1 (good and steep discrimination) and Item 7 (less good because is less steep)

Spread of Item Difficulty (made in excel):

Some items (5, 6, and 7) have a wider spread of their b1 and b2 category thresholds, whereas they are closer together for the others. This suggests that those options are less differentiable for those items. Besides adding more difficult items, another way to improve measurement of high thetas would be to expand the higher response options (e.g., from "can do it" to "can do it sometimes" or "can do it always").

What do consider when making a short form: If we wanted to improve our test by adding more difficult items but keep it the same length, then we'd need to remove some of the current items. These plots show why one must consider the combination of discrimination and difficulty in selecting which items could be removed. For instance, item 7 has the lowest discrimination (slope), but it covers a range of low theta that none of the other items do, so we should keep it for that reason. Instead, items 2 and 3 might be good candidates for removal, as they have lower discriminations than other items in their theta range. Here is the graded response model again: a 2PL-ish version vs. a 1PL-ish for Polytomous Responses using WLSMV probit model

		1PL-ish for Polytomous Responses using WLSMV probit model
	sess polytomous items using GRM under limited-info WLSMV	TITLE: Assess polytomous items using CGRM under limited-info WLSMV
	LE = Example6a.csv ; ! Don't need path if in same directory	DATA: FILE = Example6a.csv; ! Don't need path if in same directory
VARIABLE:		VARIABLE: NAMES = case dial-dia7 cial-cia7; ! All vars in data
	USEVARIABLES = cial-cia7; ! All vars in model	USEVARIABLES = cial-cia7; ! All vars in model
	CATEGORICAL = cial-cia7; ! All ordinal outcomes	CATEGORICAL = cia1-cia7; ! All ordinal outcomes
	MISSING = ALL (99999); ! Missing value code	MISSING = ALL (99999); ! Missing value code
	IDVARIABLE = case; ! Person ID variable	IDVARIABLE = case; ! Person ID variable
ANALYSIS:	ESTIMATOR = WLSMV; ! Limited-info in probits	ANALYSIS: ESTIMATOR = WLSMV; ! Limited-info in probits
	PARAMETERIZATION = THETA; ! Error vars=1 scaling	PARAMETERIZATION = THETA; ! Error vars=1 scaling
	CONVERGENCE = 0.0000001; ! For OS comparability	CONVERGENCE = 0.0000001; ! For OS comparability
		DIFFTEST=2PL.dat; ! Use saved info from bigger model
OUTPUT:	STDYX RESIDUAL; ! Standardized solution, local fit	OUTPUT: STDYX RESIDUAL; ! Standardized solution, local fit
SAVEDATA:	DIFFTEST=2PL.dat; ! Save info from bigger model	SAVEDATA:
UNVEDNIM.	SAVE = FSCORES; ! Save factor scores (thetas)	SAVE = FSCORES; ! Save factor scores (thetas)
	FILE = IADL 2PLThetas.dat; ! File factor scores saved to	FILE = IADL 2PLThetas.dat; ! File factor scores saved to
	—	MISSFLAG = 99999; ! Missing data value in file
	MISSFLAG = 999999; ! Missing data value in file	MISSELAG = 99999; MISSING data value in file
PLOT: TYP	PE = PLOT1;	PLOT: TYPE = PLOT1; ! PLOT1 gets you sample descriptives
TYP	PE = PLOT2; ! PLOT2 gets you the IRT-relevant curves	TYPE = PLOT2; ! PLOT2 gets you the IRT-relevant curves
TYP	PE = PLOT3; ! PLOT3 gets you descriptives for theta	TYPE = PLOT3; ! PLOT3 gets you descriptives for theta
MODEL: ! Or	riginal Graded Response Model (separate loadings per item)	MODEL: ! Constrained Graded Response Model (same loading for all items)
! Factor lo	padings all estimated and labeled	! Factor loadings constrained equal to single label
	<pre>C cial-cia7* (L I1-L I7);</pre>	IADL BY cial-cia7* (L);
	esholds all estimated and labeled	! Item thresholds all estimated and labeled
	isted are not observed, Mplus will throw an error	! If any listed are not observed, Mplus will throw an error
	L-cia7\$1*] (T1 I1-T1 I7);	[cial\$1-cia7\$1*] (T1 I1-T1 I7);
	2-cia7\$2*] (T2 I1-T2 I7);	[cia1\$2-cia7\$2*] (T2 I1-T2 I7);
	B-cia7\$3*] (T3 I1-T3 I7);	[cia1\$3-cia7\$3*] (T3 I1-T3 I7);
	actor mean=0 and variance=1 for identification (because we	! Direct Factor mean=0 and variance=1 for identification (because we
	J DIFFTEST, which does not allow MODEL CONSTRAINTS)	! are using DIFFTEST, which does not allow MODEL CONSTRAINTS)
-); IADL@1;	[IADL@0]; IADL@1;
LINDIGC	J; IADLEI;	
		! If not using DIFFTEST, then can get IRT parameters as before
! If not us	sing DIFFTEST, then can get IRT parameters as before	! Will become Factor mean=0 and variance=1 for identification
	ome Factor mean=0 and variance=1 for identification	[IADL*] (FactMean);
	(FactMean);	IADL* (FactVar);
	(FactVar);	
		MODEL CONSTRAINT: ! Identification here so can use below
MODEL CONST	RAINT: ! Identification here so can use below	<pre>FactMean=0; FactVar=1;</pre>
FactMean=0;	<pre>FactVar=1;</pre>	NEW(L I1-L I7); DO $(1,7)$ L I# = L; ! For 1PL model
	new IRT parameters	! Creating new IRT parameters
-	rimination, B1=y>0, B2=y>1, B3=y>2	! A = discrimination, $B1=y>0$, $B2=y>1$, $B3=y>2$
	-A I7 B1 I1-B1 I7 B2 I1-B2 I7 B3 I1-B3 I7);	NEW(A II-A I7 B1 II-B1 I7 B2 II-B2 I7 B3 II-B3 I7);
	1, end), replace # with index	! DO (begin, end), replace # with index
! Discrimin		! Discriminations
	A I# = L I# * SQRT(FactVar);	DO $(1,7)$ A I# = L I# * SQRT(FactVar);
! Difficult		! Difficulties
	B1_I# = (T1_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar));	DO $(1,7)$ B1 I# = $(T1$ I#- $(L$ I#*FactMean)) / $(L$ I#*SQRT(FactVar));
		DO (1,7) B1 I = (T2 I + (L I + FactMean)) / (L I + SQRT(FactVar)); $DO (1,7) B2 I = (T2 I + (L I + FactMean)) / (L I + SQRT(FactVar));$
	$B2_I = (T2_I + (L_I + FactMean)) / (L_I + SQRT(FactVar));$ $B3_I = (T3_I + (L_I + FactMean)) / (L_I + SQRT(FactVar));$	
DO (1,7)	$B3_I \# = (T3_I \# - (L_I \# * FactMean)) / (L_I \# * SQRT (FactVar));$	<pre>DO (1,7) B3_I# = (T3_I#-(L_I#*FactMean)) / (L_I#*SQRT(FactVar));</pre>

Graded Response Model 2PL-ish Model Fit (left) and 1PLish Model Fit (right) using WLSMV probit:

MODEL FI	T INFORMATION		MODEL FIT INFORMATION	
Number o	of Free Parameters	28	Number of Free Parameters	22
Chi-Squa	are Test of Model Fit		Chi-Square Test of Model Fit	
	Value	96.262*	Value	202.569*
	Degrees of Freedom	14	Degrees of Freedom	20
	P-Value	0.0000	P-Value	0.0000
			Chi-Square Test for Difference Testing	(analog to LRT in ML)
			Value	93.833
			Degrees of Freedom	6
			P-Value	0.0000
RMSEA (R	Root Mean Square Error Of Approxim	ation)	RMSEA (Root Mean Square Error Of Approx:	imation)
	Estimate	0.096	Estimate	0.120
	90 Percent C.I.	0.079 0.115	90 Percent C.I.	0.105 0.135
	Probability RMSEA <= .05	0.000	Probability RMSEA <= .05	0.000
CFI/TLI			CFI/TLI	
	CFI	0.997	CFI	0.993
	TLI	0.995	TLI	0.993
SRMR (St	andardized Root Mean Square Resid	ual)	SRMR (Standardized Root Mean Square Res:	idual)
	Value	0.021	Value	0.077
			Right: the Chi-Square for Difference Te 2PL version of the polytomous model fi (now under WLSMV, same as it did und	ts significantly better

Here are the parameter estimates under WLSMV Theta Parameterization (Probit) for the 2PL version of polytomous responses

UNSTANDARDIZED	MODEL RESULT	FS (IFA	MODEL SO	LUTION)	RESUL	TS FRO	M IRT MO	DEL GIV	VEN BY	NEW PARA	METERS:	
				ro-Tailed	1						Two-Tailed	
	Estimate	S.E.	Est./S.E.	P-Value				imate	S.E.	Est./S.E.	P-Value	
					New/Ad	ditional	Paramete	rs				
FACTOR LOADINGS =	CHANGE IN PROBI	T(Y=1) P	ER UNIT CHAN	IGE IN THETA								
IADL BY							IS = SLOPE					
CIA1	3.655	0.330	11.083	0.000	A_			3.655	0.330	11.083		
CIA2	3.346	0.388	8.632	0.000	A			3.346	0.388	8.632		
CIA3	2.923	0.269	10.881	0.000	A_			2.922	0.269	10.882	0.000	
CIA4	3.286	0.299	11.008	0.000	A_			3.286	0.299	11.008	0.000	
CIA5	2.222	0.159	13.963	0.000	A_			2.222	0.159	13.963	0.000	
CIA6	1.907	0.169	11.305	0.000	A_	I6		1.907	0.169	11.305		
CIA7	1.075	0.130	8.279	0.000	A_	I7		1.075	0.130	8.279	0.000	
HRESHOLDS = EXPEC	CTED PROBIT(Y=0)	WHEN TH	ETA IS O		DIFFIC	ULTIES =	THETA AT	WHICH PR	OB OF NE	XT OPTION =	= .50)	
CIA1\$1	-5.151	0.424	-12.137	0.000	В1	I1	-	1.409	0.080	-17.669	0.000	
CIA1\$2	-3.658	0.347	-10.534	0.000	В1	12	-	1.523	0.087	-17.606	0.000	
CIA1\$3	-0.734	0.217	-3.383	0.001	В1	 I3	-	1.435	0.084	-17.012	0.000	
CIA2\$1	-5.096	0.497	-10.254	0.000	В1	I4	-	1.333	0.078	-17.089	0.000	
CIA2\$2	-4.253	0.445	-9.552	0.000	В1		-	1.740	0.100	-17.386	0.000	
CIA2\$3	-2.620	0.353	-7.425	0.000		I6		1.809	0.113	-16.053	0.000	
CIA3\$1	-4.193	0.327	-12.825	0.000		_ I7		3.054	0.284	-10.735	0.000	
CIA3\$2	-3.404	0.296	-11.486	0.000	В2	I1	-	1.001	0.065	-15.311	0.000	
CIA3\$3	-1.761	0.232	-7.592	0.000		12		1.271	0.074	-17.065		
CIA4\$1	-4.379	0.342	-12.794	0.000		I3		1.165	0.073	-16.020	0.000	
CIA4\$2	-2.987	0.269	-11.107	0.000		I4		0.909	0.064	-14.126	0.000	
CIA4\$3	-1.024	0.211	-4.863	0.000		I5		0.852	0.064	-13.231	0.000	
CIA5\$1	-3.866	0.233	-16.616	0.000		 I6		1.234	0.081	-15.174	0.000	
CIA5\$2	-1.892	0.160	-11.856	0.000				2.398	0.207	-11.556	0.000	
CIA5\$3	-0.425	0.130	-3.277	0.001		 I1		0.201	0.054	-3.730	0.000	
CIA6\$1	-3.450	0.235	-14.697	0.000		I2		0.783	0.059	-13.334	0.000	
CIA6\$2	-2.354	0.184	-12.805	0.000		 I3		0.603	0.058	-10.390	0.000	
CIA6\$3	-1.400	0.154	-9.072	0.000		 I4		0.312	0.054	-5.733	0.000	
CIA7\$1	-3.282	0.249	-13.169	0.000		 I5		0.191	0.055	-3.468	0.001	
CIA7\$2	-2.577	0.181	-14.231	0.000		 		0.734	0.064	-11.551	0.000	
CIA7\$3	-1.757	0.137	-12.840	0.000		I7		1.635	0.138	-11.887	0.000	
on A-astogory roc	monaga the sub	-modola	look liko +k		TOORT							
<u>For 4-category res</u> Probit(y= 0 vs 123				115.						UAL CORRI	OFF FROM I	ገልሞልነ
Probit(y= 01 vs 23						VER FO	hichoric	CORREI	ALION	(IIOW FAR	OFF FROM I),,,,
robit y= 012 vs 3	3) = -threshold\$	3 + load	ing(Theta)		Residu	als for	Covarianc	es/Correl	ations/R	esidual Co	rrelations	
					1.00100	CIA1	CIA2	CIA3	CIA4	CIA5	CIA6	
for 4-category res				is:		CIAI	CIAZ	CIAS	CIN4	CIND	CINU	
S1 Probit(y= 0 vs	123) = a(theta	- diffic	ulty\$1)		CIA1							
2 Probit(y= 01 vs			- · ·		CIA2	0.013						
\$3 Probit(y= 012 v	vs 3) = a(theta	- diffic	ulty\$3)		CIA2 CIA3	0.013	0.017					
					CIA3 CIA4	-0.012	-0.025	-0.036				
In requesting p	predicted fac	ctor sc	ores usin	g WLSMV, their					0 0 2 2			
sample mean wa	-			-	CIAJ	-0.030	-0.045	-0.067	0.032	0 0 2 5		
=				=	CIA6	-0.040	-0.055	-0.025	0.026	0.035	0.025	
was 0.538 (not	•	-		• •	CIA/	-0.026	-0.007	0.016	0.022	-0.031	0.025	
posteriori = m	ean) estimate	es, WLS	MV provid	es MAP							07 2 3	
(maximum a pos	teriori = mod	de) est	imates, w	hich are less						ncy is <	.07 in abs	so⊥ut
			-		value	, whic	h is pre	etty goo	od!			
stable with fer	wer items. Us	se the	ML Versio	ns instead.		,	- F	-1 954				

PSQF 6249 Example 6a page 9 Extensive Results Section (in which model fit via WLSMV is reported first, followed by full-information MML as "better" version of model parameters). Note this is *way* more text than one would typically write, but I provide it here for completeness:

Psychometric assessment for the extent to which a single latent trait could predict that pattern of association among these 7 items was conducted using Item Factor Analysis (IFA) in *Mplus* v 8.4 (Muthén and Muthén, 1998–2017). These models use a cumulative link function (i.e., logit or probit) and a multinomial conditional response distribution, such that the four-category response outcomes (i.e., response *y* for item *i* and subject *s*) are predicting using three binary submodels: $Link[p(y_{is} > 0)] = -\tau_{i1} + \lambda_i F_s$, $Link[p(y_{is} > 1)] = -\tau_{i2} + \lambda_i F_s$, and $Link[p(y_{is} > 2)] = -\tau_{i2} + \lambda_i F_s$. In each model, $-\tau_i$ is the negative of an item-specific and category-specific threshold (which becomes an intercept when multiplied by -1) that gives the link-transformed probability of the submodel's item response (for item *i* and subject *s*) at a latent trait score *F* for subject *s* of 0, and λ is a factor loading for item *i* for the expected change in the link-transformed response options.

The current gold standard of estimation for IFA models is marginal maximum likelihood (MML), in which the term marginal refers to the full-information process of marginalizing over the possible trait values for each person in the analysis using adaptive Gaussian guadrature with 15 points per factor. Accordingly, measures of model fit when using MML involve the contingency table of all possible responses to all items. In our 7 items, the full contingency table generates up to $4^7 = 16,384$ possible cells. Consequently, no measures of absolute fit would be valid for the current sample of 635 respondents (which would need a minimum expected count of 5 respondents within each possible cell). Instead, we conducted assessment of model fit via a limited-information diagonally weighted least squares estimator using a mean- and variance-corrected χ^2 (i.e., WLSMV in Mplus with the THETA parameterization and a probit link function). In the WLSMV estimator, the item responses are first summarized into an estimated polychoric correlation matrix using the cross-tabulation of responses for each possible pair of items. The IFA models are then fitted to the estimated polychoric correlation matrix, such that measures of global and local absolute fit (i.e., as traditional in confirmatory factor analyses of continuous responses) can be computed from the discrepancy of the model-predicted and data-estimated polychoric correlation matrices. In addition to y2 tests of absolute fit, it also provides the Comparative Fit Index (CFI), the Standardized Root Mean Square Residual (SRMR), and the Root Mean Square Error of Approximation (RMSEA). The CFI indexes the fit of the specified model relative to a null model (of no polychoric correlations across items), in which CFI values ≥ .95 indicate excellent fit. Conversely, the SRMR and RMSEA index the fit of the specified model relative to a saturated model (i.e., the data-estimated polychoric correlations), in which SRMR and RMSEA values ≤ .06 indicate excellent fit. RMSEA also offers a 90% confidence interval and a significance test of "close fit" with a null hypothesis of .05. Local misfit can be diagnosed by examining the specific sources of discrepancy between the model-predicted and data-estimated tetrachoric correlations (i.e., as available using the RESIDUAL option in Mplus). Finally, the fit of nested models can be compared using the DIFFTEST procedure in Mplus.

A single-trait model was first fit for the seven ordinal items using WLSMV, in which the latent trait mean and variance were fixed for identification to 0 and 1, respectively, separate factor loadings were estimated for each item, and separate thresholds were estimated for each binary submodel per item. This model exhibited acceptable fit by CFI = .997 and SRMR = .021, but unacceptable fit by the χ^2 test of absolute fit, χ^2 (14) = 96.262, p < .001, and RMSEA = .096 [CI = .079–.115, p < .001]. However, examination of local misfit revealed all discrepancies between the model-predicted and data-estimated polychoric correlations were less than .07 in absolute value, indicating no practically significant bivariate item misfit. A reduced model in which all loadings were constrained equal across items fit significantly worse, DIFFTEST(6) = 93.833, p < .001, indicating differences in item discrimination (i.e., the extent to which each item was related to the latent trait). Thus, the original model was retained for further examination using full-information marginal maximum likelihood (MML) estimation instead.

Model parameters obtained using MML and a logit link are shown in Table 1, which includes the IFA item parameters (thresholds and loadings), as well as their Item Response Theory (IRT) analogous parameter of item difficulty, computed as $b_{ic} = \tau_{ic}/\lambda_i$; IRT discrimination a_i is the same as the loading λ_i in this case. The net result of these item parameters can be described more succinctly by examining the overall reliability with which the latent trait has been measured. In IFA or IRT models—as in any kind of psychometric model with a nonlinear relationship between the item response and the latent trait—reliability is trait-specific, most often characterized by a quantity known as *test information*. For ease of interpretation, the test information function created by the items was converted to a traditional measure of reliability that ranges from 0 to 1 as reliability = information / (information +1). Figure 1 shows that test reliability is ≥.80 only from ~1.8 SD below the mean to 0.20 SD above the mean, after which point reliability drops off precipitously due to a lack of items with difficulty levels above 0.

(See Example 6a spreadsheet for Table 1 and Figure 1)

Reference: Muthén, L. K., & Muthén, B.O. (1998–2017). Mplus user's guide (8th ed.). Los Angeles, CA: Muthén & Muthén.