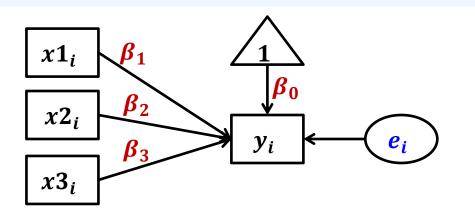
General Linear Models (GLMs) with Multiple Fixed Effects for a Single Predictor

• Topics:

- > Reviewing empty GLMs and single predictor GLMs
- > GLM special cases: 2+ fixed slopes to describe a predictor's effect
 - "Analysis of Variance" (ANOVA) for a one categorical predictor
 - e.g., income differences across 3 categories of employment class
 - Nonlinear effects of a single quantitative predictor
 - e.g., quadratic continuous effect of years of age on income
 - e.g., piecewise discontinuous effect of years of education on income
 - Testing linear effects of a single ordinal predictor
 - e.g., linear vs. nonlinear effect of 5-category happiness on income

Where we're headed in this unit...



This figure is a **path diagram**. This path diagram illustrates a general linear model with 3 x_i predictors of 1 y_i outcome. The "1" triangle is a constant used by the fixed intercept.

- Synonyms for y_i outcome: dependent variable, criterion, thing-to-be explained/predicted/accounted for
- Synonyms for each x_i predictor: regressor, independent variable (if manipulated), covariate (if quantitative or if it must be included to show incremental contributions above it)
 - > This unit will cover the use of multiple predictors to describe the effect of a single conceptual predictor (next up is multiple conceptual predictors)
- Ways to describe the goal of a model:
 - \succ "Examine effects of (the x_i predictors) on (the y_i outcome)"
 - \rightarrow "Regress (outcome y_i) on (the x_i predictors)"

Review: Empty Models and Single Predictor Models

- Predictive linear models create a **custom expected outcome** for each person through a linear combination of fixed effects that multiply predictor variables
 - $y_i = (\text{constant} * 1) + (\text{constant} * \text{Xpred1}_i) + (\text{constant} * \text{Xpred2}_i)...$
- Empty GLM: Actual $y_i = \beta_0 + e_i$, Predicted $\hat{y}_i = \beta_0$
 - β_0 = intercept = expected y_i = here is mean \overline{y} (best naïve guess if no predictors)
 - $\mathbf{e}_i = \mathbf{residual} = \mathbf{i} \mathbf{s}$ and predicted $\mathbf{\hat{y}_i}$
 - Because $\hat{y}_i = \bar{y}$ for all, the e_i residual variance across persons (σ_e^2) is all the y_i variance
- Add a predictor: Actual $y_i = \beta_0 + \beta_1(x_i) + e_i$, Predicted $\hat{y}_i = \beta_0 + \beta_1(x_i)$
 - β_0 = intercept = expected y_i when $x_i = 0$ (so always ensure $x_i = 0$ makes sense)
 - β_1 = slope of x_i = difference in y_i per one-unit difference in x_i
 - $\mathbf{e}_i = \mathbf{residual} = \mathbf{i} \mathbf{s}$ and predicted $\mathbf{\hat{y}_i}$
 - Now \hat{y}_i differs by x_i , so e_i residual variance across persons (σ_e^2) is **leftover** y_i variance

1 Fixed Effect for a Single Predictor

- β_1 for the **slope of** x_i is scale-specific \rightarrow is "unstandardized"
- Unstandardized results for β_1 include:
 - > **Estimate** = (Est) = most likely value for the sample's slope
 - > **Standard Error** (SE) = index of inconsistency across samples = how far away on average a sample x_i slope is from the population x_i slope
 - With only a single slope in the model, the SE for its estimate depends on the model residual variance (σ_e^2), variance of x_i (σ_x^2), and $DF_{denominator}$: sample size minus k, the number of β model fixed effects (N k)
 - > **Test-statistic** $t = (Est H_0)/SE \rightarrow$ "**Univariate Wald test**" gives p-value for slope's significance using t-distribution and $DF_{denominator} = N k$
- Can also request a " $\underline{standardized}$ " slope to provide an r effect size:
 - For a GLM with a **single** quantitative or binary predictor, $\beta_{std} = Pearson r$

$$\beta_{std} = \beta_{unstd} * \frac{SD_x}{SD_y}$$

GLMs with Predictors: Binary vs. 3+ Categories

- To examine a **binary predictor** of a quantitative outcome, we only need **2 fixed effects** to tell us **3 things**: the outcome mean for Category=0, the outcome mean for Category=1, and the outcome mean difference
- Actual $y_i = \beta_0 + \beta_1(Category_i) + e_i$, Predicted $\hat{y}_i = \beta_0 + \beta_1(Category_i)$
 - > Category 0 Mean: $\hat{y}_i = \beta_0 + \beta_1(0) = \beta_0 \leftarrow \text{fixed effect } #1$
 - ▶ Difference of Category 1 from Category 0: $(\beta_0 + \beta_1) (\beta_0) = \beta_1 \leftarrow$ fixed effect #2
 - > Category 1 Mean: $\hat{y}_i = \beta_0 + \beta_1(1) = \beta_0 + \beta_1 \leftarrow \text{linear combination of fixed effects}$
 - To get the estimate and SE for any mean created from a <u>linear combination</u> of fixed effects, you need to ask for it via SAS ESTIMATE, STATA LINCOM, or R GLHT
 - > Btw, this type of GLM is also called a "two-sample" or "independent groups" t-test
- To examine the effect of a predictor with 3+ categories, the GLM needs as many fixed effects as the number of predictor variable categories = C
 - ightharpoonup If C=3, then we need the $oldsymbol{eta_0}$ intercept and 2 predictor slopes: $oldsymbol{eta_1}$ and $oldsymbol{eta_2}$
 - \rightarrow If C=4, then we need the β_0 intercept and 3 predictor slopes: β_1 , β_2 , and β_3
 - * # pairwise mean differences = $\frac{C!}{2!(C-2)!}$ \rightarrow e.g., given C = 3, # diffs = $\frac{3*2*1}{(2*1)(1)} = 3$
 - > This type of GLM goes by the name "Analysis of Variance" (ANOVA) in which the term "category" is usually replaced with "group" as a synonym

5

"Indicator Coding" for a 3-Category Predictor

Comparing the means of a quantitative outcome across
 3 categories requires creating
 2 new binary predictors to be included simultaneously along with the intercept, for example, as coded so Low= Intercept (ref)

workclass variable ($N=734$)	LvM: Low vs Mid?	LvU: Low vs Upp?
1. Low $(n = 436)$	0	0
2. Mid $(n = 278)$	1	0
3. Upp $(n = 20)$	0	1

```
Actual: y_i = \beta_0 + \beta_1(LvM_i) + \beta_2(LvU_i) + e_i
Predicted: \hat{y}_i = \beta_0 + \beta_1(LvM_i) + \beta_2(LvU_i)
```

- Model-implied means per category (group):
 - > Low Mean: $\hat{y}_L = \beta_0 + \beta_1(0) + \beta_2(0) = \beta_0 \leftarrow \text{fixed effect } #1$
 - \rightarrow Mid Mean: $\hat{y}_M = \beta_0 + \beta_1(1) + \beta_2(0) = \beta_0 + \beta_1 \leftarrow$ found as linear combination
 - > Upp Mean: $\hat{y}_U = \beta_0 + \beta_1(0) + \beta_2(1) = \beta_0 + \beta_2 \leftarrow$ found as linear combination
- Model-implied differences between each pair of categories (groups):
 - > Diff of Low vs Mid: $(\beta_0 + \beta_1) (\beta_0) = \beta_1$ ← fixed effect #2
 - → Diff of Low vs. Upp: $(β_0 + β_2) (β_0) = β_2 \leftarrow$ fixed effect #3
 - > Diff of Mid vs Upp: $(\beta_0 + \beta_2) (\beta_0 + \beta_1) = \beta_2 \beta_1 \leftarrow$ found as linear combination

See p. 278 of: Darlington, R. B., & Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. Guilford.

GLM 3-Category Predictor: Results

Empty Model: $y_i = \beta_0 + e_i$

- Model parameters:
 - > Intercept β_0 : Est = 17.30 SE = 0.51
 - Residual Variance σ_e^2 : Est = 190.21

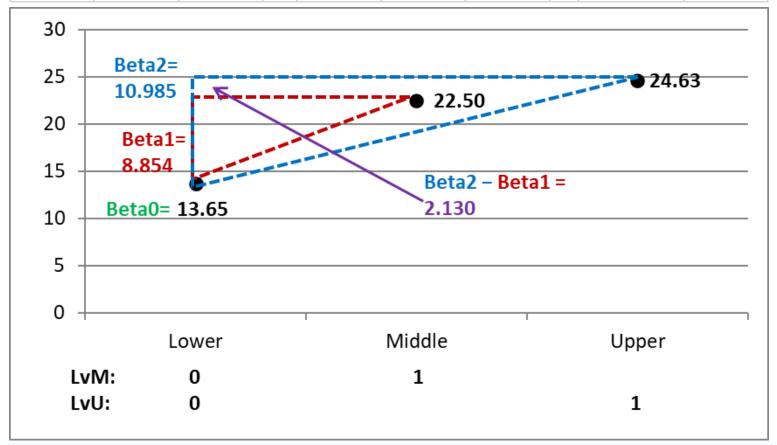
Group ($N = 734$)	LvM	LvU
1. Low $(n = 436)$	0	0
2. Mid $(n = 278)$	1	0
3. Upp $(n = 20)$	0	1

Predictor Model: $y_i = \beta_0 + \beta_1 (LvM_i) + \beta_2 (LvU_i) + e_i$

- Model parameters:
 - > Intercept β_0 : Est = 13.65, SE = 0.63, $p < .001 \rightarrow Mean for Low (= <math>\hat{y}_L$)
 - > Slope β_1 : Est = 8.85, SE = 1.00, $p < .001 \rightarrow Mean diff for Low vs Mid$
 - > Slope β_2 : Est = 10.98, SE = 2.99, $p < .001 \rightarrow Mean diff for Low vs Upp$
 - Residual Variance σ_e^2 : Est = 171.01
- <u>Linear combinations of model parameters:</u>
 - \rightarrow Mid Mean: $\hat{y}_M = 13.65 + 8.85(1) + 10.98(0) = 22.50, SE = 0.78, p < .001$
 - > Upp Mean: $\hat{y}_{U} = 13.65 + 8.85(0) + 10.98(1) = 24.63, SE = 2.92, p < .001$
 - \rightarrow Mean diff of Mid vs Upp = $\beta_2 \beta_1 = 2.13$, SE = 3.03, p = .482

GLM 3-Category Predictor: Results

Fixed Effects				Predictors			Pred
Beta0	Beta1	Beta2	Intercept	LvM	LvU	workclass	Y Hat
13.650	8.854	10.985	1	0	0	Lower	13.65
13.650	8.854	10.985	1	1	0	Middle	22.50
13.650	8.854	10.985	1	0	1	Upper	24.63



Example with a 4-Category Predictor

4 groups requires creating 3 new binary predictors to be included simultaneously along with the intercept—for example, using "indicator dummy-coded" predictors so Control= Reference

Treatment Group	d1: C vs T1?	d2: C vs T2?	d3: C vs T3?
1. Control	0	0	0
2. Treatment 1	1	0	0
3. Treatment 2	0	1	0
4. Treatment 3	0	0	1

- Model: $y_i = \beta_0 + \beta_1(d1_i) + \beta_2(d2_i) + \beta_3(d3_i) + e_i$
 - > The model gives us the predicted outcome mean for each category as follows:

Control (Ref)	Treatment 1	Treatment 2	Treatment 3		
Mean	Mean	Mean	Mean		
$\boldsymbol{\beta}_{0}$	$\beta_0 + \beta_1(d1_i)$	$\beta_0 + \beta_2(d2_i)$	$\beta_0 + \beta_3(d3_i)$		

Model directly provides 3 mean differences (control vs. each treatment), and indirectly provides another 3 mean differences (differences between treatments) as linear combinations of the fixed effects... let's see how this works

See p. 278 of: Darlington, R. B., & Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. Guilford.

Example with a 4-Category Predictor

Control (Ref)	Treatment 1	Treatment 2	Treatment 3	
Mean = 10	Mean =12	Mean =15	Mean =19	
$oldsymbol{eta_0}$	$\beta_0 + \beta_1(d1_i)$	$\beta_0 + \beta_2(d2_i)$	$\beta_0 + \beta_3(d3_i)$	

Model:
$$y_i = \beta_0 + \beta_1(d1_i) + \beta_2(d2_i) + \beta_3(d3_i) + e_i$$

Given means above, here are the pairwise category differences:

	Alt Group Ref Group	<u>Difference</u>
• C vs. T1 =	$(\beta_0 + \boldsymbol{\beta_1}) - (\beta_0)$	$= \beta_1 = 2$
• C vs. T2 =	$(\beta_0 + \boldsymbol{\beta_2}) - (\beta_0)$	$= \beta_2 = 5$
• C vs. T3 =	$(\beta_0 + \boldsymbol{\beta}_3) - (\beta_0)$	$= \beta_3 = 9$
• T1 vs. T2 =	$= (\beta_0 + \boldsymbol{\beta}_2) - (\beta_0 + \boldsymbol{\beta}_1)$	$= \beta_2 - \beta_1 = 5 - 2 = 3$
• T1 vs. T3 =	$= (\beta_0 + \boldsymbol{\beta}_3) - (\beta_0 + \boldsymbol{\beta}_1)$	$= \beta_3 - \beta_1 = 9 - 2 = 7$
• T2 vs. T3 =	$= (\beta_0 + \boldsymbol{\beta_2}) - (\beta_0 + \boldsymbol{\beta_2})$	$= \beta_2 - \beta_2 = 9 - 5 = 4$

10

Back to the 3-Category Predictor GLM

- The ANOVA-type question "Does group membership predict y_i ?" translates to "Are there significant group mean differences in y_i "?
 - > Can be answered <u>specifically</u> via <u>pairwise</u> group differences given directly by (or created from) the model fixed effects: For example: $y_i = \beta_0 + \beta_1(LvM_i) + \beta_2(LvU_i) + e_i$,
 - Is $\beta_1 \neq 0$? If so, then $\hat{y}_M \neq \hat{y}_L$ (given directly because of our coding)
 - Is $\beta_2 \neq 0$? If so, then $\hat{y}_U \neq \hat{y}_L$ (given directly because of our coding)
 - Is $(\beta_2 \beta_1) \neq 0$? If so, then $\hat{y}_U \neq \hat{y}_M$ (requested as linear combination)
 - \rightarrow A more <u>general</u> answer to "Does group matter?" requires testing if β_1 and β_2 differ from 0 <u>jointly</u>, in other words:
 - Is the **residual variance** from this model with two grouping predictors **significantly lower** than the total variance from the empty model?
 - Does the **predicted** \hat{y}_i provided by this model with two group predictors **correlate significantly with the actual** y_i ?

Prediction Gained vs. DF spent

- To provide a **more general answer** to "**Does group matter?**" we need to consider the impact of our prediction <u>relative to</u> how many fixed effects we needed to generate predicted \hat{y}_i and how good they did (relative to what is left unknown)
 - > This is an example of a "multivariate Wald test" (stay tuned for others)
 - * "Relative" is quantified using two types of **Degrees of Freedom** = DF = total number of fixed effects possible \rightarrow total DF = sample size N
 - " $DF_{numerator}$ " = k-1 = number of fixed slopes in the model
 - " $DF_{denominator}$ " = number of DF left over (not yet spent): N k
 - > In GLMs, the amount of information captured by the model's prediction and the amount of information left over are quantified using different sources of "sums of squares" (SS)
 - Basic form of SS is the **numerator** in computing variance: $\frac{\sum_{i=1}^{N}(y_i-\bar{y})^2}{N-1}$
 - For example, "outcome (or total) $SS'' = SS_{total} = \sum_{i=1}^{N} (y_i \bar{y})^2$

Prediction Gained vs. DF spent

- How much information is provided by our model prediction is quantified by "model sums of squares": $SS_{model} = \sum_{i=1}^{N} (\hat{y}_i - \overline{y})^2$
- To quantify the **relative** size of that predicted info, we need to adjust it for $DF_{numerator}$ = number of fixed slopes = k-1
 - > Then get "Model Mean Square" = $MS_{model} = \frac{SS_{model}}{k-1}$ | -1 because intercept doesn't get counted
 - > MS_{model} = "how much information has been captured per point spent"
- How much information is leftover is quantified by "residual (or error) sums of squares": $SS_{residual} = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$
- To quantify the relative size of that leftover information, we need to adjust it for $DF_{denominator} = N - k$
 - > "Residual (or Error) Mean Square" = $MS_{residual} = \frac{SS_{residual}}{N}$
 - \rightarrow $MS_{residual}$ = "how much information left to explain per point remaining"

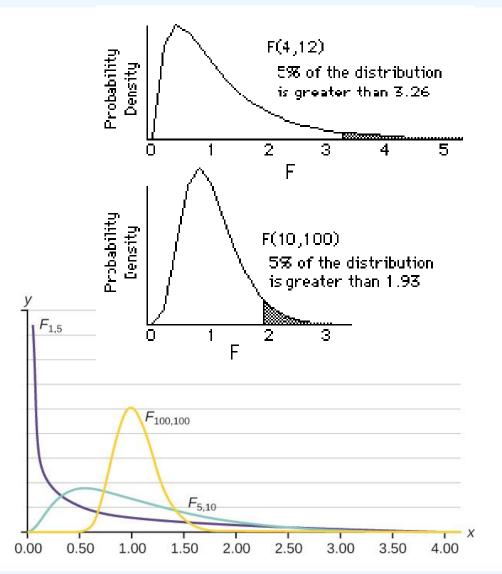
13

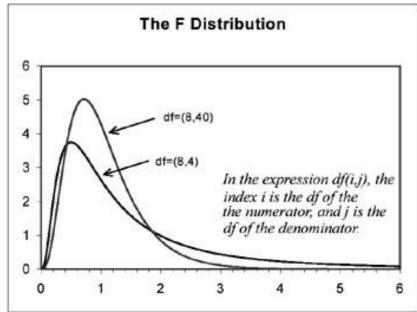
Prediction Gained vs. DF spent

Source of Outcome Information	Sums of Squares (each summed from $i = 1$ to N)	Degrees of Freedom	Mean Square
Model (known because of predictor slopes)	$SS_{model}: (\widehat{\boldsymbol{y}_i} - \overline{\boldsymbol{y}})^2$	DF_{num} : $k-1$	MS_{model} : $\frac{SS_{model}}{k-1}$
Residual (leftover after predictors; still unknown)	$SS_{residual}: (y_i - \hat{y}_i)^2$	$DF_{den}: N-k$	$MS_{residual}$: $\frac{SS_{residual}}{N-k}$
"Corrected" Total (all original information in y_i)	$SS_{total}: (y_i - \overline{y})^2$	$DF_{total}: N-1$ (not shown)	MS_{total} : $\frac{SS_{total}}{N-1}$ (not shown)

- This table now provides us with a way to answer the more general question of "Does group membership predict y_i ?" \rightarrow Is our model significant?
 - Variance explained by model fixed slopes: $R^2 = \frac{SS_{total} SS_{residual}}{SS_{total}}$
 - R^2 = square of correlation between model-predicted \hat{y}_i and actual y_i
 - F **test-statistic** for significance of $R^2 > 0$? is given two equivalent ways: $F(DF_{num}, DF_{den}) = \frac{MS_{model}}{MS_{residual}}$ or $F(DF_{num}, DF_{den}) = \frac{(N-k)R^2}{(k-1)(1-R^2)}$

Your New Friend, the F distribution





- The F test-statistic (F-value) is a ratio (in a squared metric) of "info explained over info unknown", so F-values must be positive
- Its shape (and thus the critical value for the boundary of where "expected" starts) varies by DF_{num} (like χ^2) and by DF_{den} (like t, which is flatter for smaller N-k)

Top left image borrowed from: https://www.statsdirect.com/help/distributions/f.htm
Top right image borrowed from: https://www.globalspec.com/reference/69569/203279/11-9-the-f-distribution
Bottom left image borrowed from: https://www.texasgateway.org/resource/133-facts-about-f-distribution
PSOF 6243: Lecture 3

Summary: Steps in Significance Testing

- · Choose critical region: % alpha ("unexpected") and possible direction
 - Both directions or just one?
 - > Alpha (α) (1 -% confidence)?
 - Distribution for test-statistic will be dictated as follows:

Uses Denominator Degrees of Freedom?	Test 1 slope*	Test >1 slope*
No: implies infinite N	Z	$\chi^2 (= z^2 \text{ if 1})$
Yes: adjusts based on N	t	$F(=t^2 \text{ if } 1)$

- If the **test-statistic exceeds** the distribution's critical value(s), then the obtained p-value is less than the chosen alpha level:
 - You "reject the null hypothesis"—it is sufficiently unexpected to get a test-statistic that extreme if the null hypothesis is true; result is "significant"
- If the test-statistic does NOT exceed the distribution's critical value(s), then the p-value is greater than or equal to the chosen alpha level:
 - You "DO NOT reject the null hypothesis"—it is sufficiently expected to get a test-statistic that extreme if the null hypothesis is true; result is "not significant"

^{* #} Fixed slopes (or associations) = **numerator degrees of freedom** = k-1

Significance of the Model Prediction

- With **only 1 predictor**, we don't need a separate F test-statistic of the model R^2 significance; for example: $\mathbf{y_i} = \boldsymbol{\beta_0} + \boldsymbol{\beta_1}(x_i) + \boldsymbol{e_i}$
 - \triangleright Significance of unstandardized β_1 comes from $t = (Est H_0)/SE$
 - Significance of the model prediction \mathbb{R}^2 from $\mathbb{F} = \mathbb{t}^2$ already
 - So if $m{eta_1}$ is significant via $|t_{m{eta_1}}| > t_{critical}$, then the F test-statistic for the model is significant, too \rightarrow sufficiently unexpected if H_0 were true
 - > Standardized β_1 = Pearson's r between predicted \hat{y}_i and actual y_i
 - So model $R^2 = \frac{SS_{total} SS_{residual}}{SS_{total}}$ is the same as (**Pearson's** r)²
- With **2+ fixed slopes**, we DO need to examine model **F** test-statistic and R^2 , for example: $y_i = \beta_0 + \beta_1 (LvsM_i) + \beta_2 (LvsU_i) + e_i$
 - \succ F test-statistic: Is the \hat{y}_i predicted from β_1 AND β_2 together significantly correlated with actual y_i ? The square of that correlation is the **model** R^2
 - \rightarrow F test-statistic evaluates model R^2 per DF spent to get it and DF leftover

Significance of the Model: Example

- For example: $y_i = \beta_0 + \beta_1(LvsM_i) + \beta_2(LvsU_i) + e_i$
- Group-specific results: We already know that L<M, L<U, and L=M
- Significance test of the model: $R^2 = .103$
- Report as $F(DF_{num}, DF_{den}) = Fvalue$, $MSE = MS_{res}$, p < pvalue

Source of Outcome Information	Sums of Squares (each summed from $i = 1$ to N)	Degrees of Freedom	Mean Square	<i>F</i> Value
Model (known)	$SS_{model}: (\widehat{y}_i - \overline{y})^2$ $= 14,414.03$	$egin{aligned} m{DF_{num}} &: m{k-1} \\ &= 2 \text{ slopes} \\ &(-1 \text{ for int}) \end{aligned}$	$MS_{model}: \frac{SS_{model}}{k-1} = 7,207.01$	42.14
Residual ("error")	$SS_{residual}: (y_i - \hat{y}_i)^2$ = 125,009.25	DF_{den} : $N - k$ = 731 leftover	$MS_{residual}$: $\frac{SS_{residual}}{N-k}$ = 171.01	
Corrected Total (after \overline{y})	SS_{total} : $(y_i - \bar{y})^2$ = 139,423.23	N = 734 - 1 = 733 total corrected for int		

Another version of R²: "Adjusted R²"

- Just like we may want to adjust Pearson's r for bias due to small sample size, some feel the need to **adjust the model** R^2
 - $R^2 = \frac{SS_{total} SS_{residual}}{SS_{total}} \rightarrow Must be positive if computed this way$
 - > $R_{adj}^2 = 1 \frac{(1-R^2)(N-1)}{N-k-1} = 1 \frac{MS_{residual}}{MS_{total}}$ \rightarrow Change in residual variance relative to empty model
 - R_{adj}^2 can be negative! (i.e., for a really-not-useful set of fixed slopes)
- Although adjusted R^2 is considered as the only "correct" version by a few, I have never once been asked to report it...
 - > But just in case Reviewer 3 wants it some day, here you go...
 - For our example: $R_{adj}^2 = 1 \frac{(1-.103)(734-1)}{734-3} = .101 (R_{unadj}^2 = .103)$
 - > Btw, we need to use SAS PROC REG instead of SAS PROC GLM to get R^2_{adj} (both R^2 versions are given by STATA REGRESS and R LM)

Effect Size per Fixed Slope

- The **model** R^2 **value** (the square of the correlation between predicted \hat{y}_i and actual y_i) provides a **general effect size**, but you may also want an **effect size for each fixed slope**
 - Why? To standardize the effect magnitude and/or to predict power
 - For models with one slope only, the **standardized slope** (found using z-scored variables with M=0 and SD=1) is the same as Pearson's correlation \rightarrow unambiguous "bivariate" effect size
 - > For models with > 1 slope, there are multiple potential measures of slope-specific effect size that you can choose from...
- Although standardized slopes are often used to index effect size in multiple-slope models, they have problems in some cases:
 - Ambiguous results for quadratic or multiplicative terms (z-scored product of 2 variables is not equal to product of 2 z-scored variables)
 - Differences in sample size across groups create different standardized slopes for categorical predictors given the same unstandardized mean difference (see Darlington & Hayes, 2016 ch. 8 for more)

Effect Size per Fixed Slope from t

- We can use t test-statistics to compute 2 different metrics of partial effect sizes (for slopes or their linear combinations)
 - Here "partial" refers to a slope's unique effect in models with multiple fixed slopes (stay tuned for "semi-partial" alternatives)
 - \rightarrow Why t-value? Effect sizes for fixed effect linear combinations, too
 - > Partial correlation r (range is ± 1): $pr = \frac{t}{\sqrt{t^2 + DF_{den}}}$
 - Useful for quantitative predictors to convey strength of unique association for that slope
 - Can also get partial r from SAS PROC CORR, STATA PCORR, and pcor.test in R package ppcor
 - > **Partial Cohen's** *d* (range is $\pm \infty$): $pd = \frac{2t}{\sqrt{DF_{den}}}$

$d \approx \frac{2r}{\sqrt{1+r^2}}$

From r to d:

$$r \approx \frac{\sqrt{1 + r^2}}{\sqrt{4 + d^2}}$$

- Conveys difference between two groups in standard deviation units
- Other common variants: Glass' delta uses SD for only 1 group; Hedges' g weights by the relative sample size in each group

Effect Sizes for Our Example Results and Sample Sizes Needed for Power = .80

• LvM Diff as β_1 : Est = 8.85, SE = 1.00, t(731) = 8.82, p < .001

$$r = \frac{8.82}{\sqrt{8.82^2 + 731}} = 0.31, d = \frac{2*8.82}{\sqrt{731}} = 0.65 \Rightarrow \text{-per-group } n > 45$$

• LvU Diff as β_2 : Est = 10.98, SE = 2.99, t(731) = 3.67, p < .001

$$r = \frac{3.67}{\sqrt{3.67^2 + 731}} = 0.13, d = \frac{2*3.67}{\sqrt{731}} = 0.27 \rightarrow \text{per-group } n > 175$$

• MvU Diff as: $\beta_2 - \beta_1$: Est = 2.13, SE = 3.03, t(731) = 0.70, p = .482

•
$$r = \frac{0.70}{\sqrt{0.70^2 + 731}} = 0.03, d = \frac{2*0.70}{\sqrt{731}} = 0.05 \rightarrow \text{per-group } n > 2, 102$$

• Model $R^2 = .103, r = .322 \rightarrow \text{-overall } N > 85$

Intermediate Summary

- For GLMs with **one fixed slope**, the significance test for that fixed slope is the same as the significance test for the model
 - > Slope β_{unstd} : $t = \frac{Est H_0}{SE}$, β_{std} = Pearson r
 - Model: $F = t^2$, $R^2 = r^2$ because predicted \hat{y}_i only uses β_{unstd}
- For GLMs with <u>2+ fixed slopes</u>, the significance tests for those fixed slopes (or any linear combinations thereof) are NOT the same as the significance test for the overall model
 - > Single test of one fixed slope via t (or z) \rightarrow "Univariate Wald Test"
 - ▶ Joint test of 2+ fixed slopes via F (or χ^2) → "Multivariate Wald Test"
 - F test-statistic is used to test the significance of the model R^2 (the square of the r between model-predicted \hat{y}_i and actual y_i , which is necessary whenever the predicted \hat{y}_i uses multiple β_{unstd} slopes)
 - F test-statistic evaluates model R^2 per DF spent to get it and DF leftover

Nonlinear Trends of Quantitative Predictors

- Besides predictors with 3+ categories, another situation in which
 a single predictor variable may require more than one fixed slope
 to create its model prediction (its "effect" or "trend") is when a
 quantitative predictor has a nonlinear relation with the outcome
- We will examine three types of examples of this scenario:
 - > Curvilinear effect of a quantitative predictor
 - Combine linear and quadratic slopes to create U-shape curve
 - Use natural-log transformed predictor to create an exponential curve
 - > Piecewise effects for "sections" of a quantitative predictor
 - Also known as "linear splines" but each slope can be nonlinear, too
 - > **Testing the assumption of linearity**: that equal differences between predictor values create equal outcome differences
 - Relevant for ordinal variables in which numbers are really just labels
 - Relevant for count predictors in which "more" may mean different things at different predictor values (e.g., "if and how much" predictors)

Curvilinear Trends of Quantitative Predictors

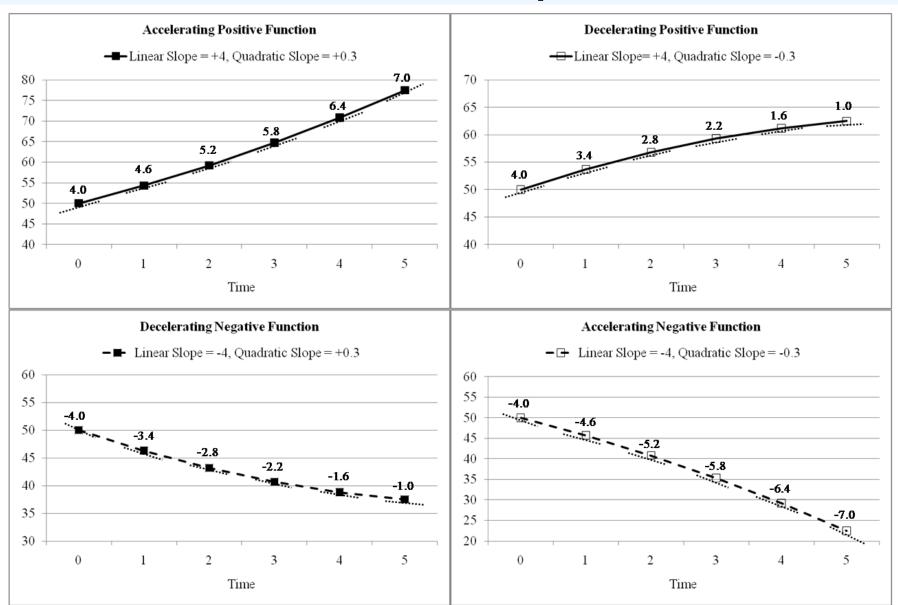
- The effect of a quantitative predictor does NOT have to be linear curvilinear effects may be more theoretically reasonable or fit better
- There are many kinds of nonlinear trends—here are two examples:
 - > Quadratic (i.e., U-shaped): created by combining two predictors
 - "Linear": what it means when you enter the predictor by itself
 - "Quadratic": from also entering the predictor² (multiplied by itself)
 - Good to create relationships that change directions
 - Example for quadratic trend of x_i : $y_i = \beta_0 + \beta_1(x_i) + \beta_2(x_i)^2 + e_i$
 - Exponential(ish): created from one nonlinearly-transformed predictor
 - Predictor = natural-log transform of predictor (positive values only)
 - Good to create relationships that look like diminishing returns
 - Example for exponential(ish) trend of x_i : $y_i = \beta_0 + \beta_1 (Log[x_i]) + e_i$

How to Interpret Quadratic Slopes

- A quadratic slope makes the effect of x_i change across itself!
 - > Related to the ideas of position, velocity, and acceleration in physics
- Quadratic slope = HALF the rate of acceleration/deceleration
 - > So to describe how the linear slope for x_i changes per unit difference in x_i , you must **multiply the quadratic slope for** x_i **by 2**
- If fixed linear slope = 4 at $x_i = 0$, with quadratic slope = 0.3?
 - \rightarrow "Instantaneous" linear rate of change is 4.0 at $x_i = 0$, is 4.6 at $x_i = 1...$
 - Btw: The "twice" rule comes from the derivatives of the function with respect to x_i:

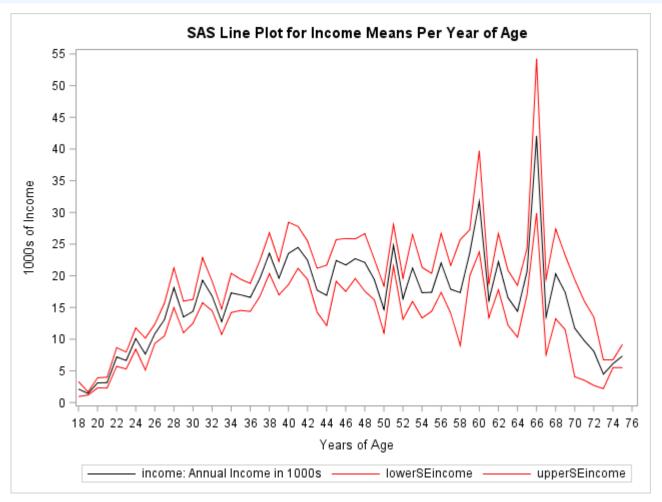
Intercept (Position) at
$$x_i = X$$
: $\hat{y}_X = 50.0 + 4.0x_i + 0.3x_i^2$
First Derivative (Velocity) at X: $\frac{d\hat{y}_X}{d(X)} = 4.0 + 0.6x_i$
Second Derivative (Acceleration) at X: $\frac{d^2\hat{y}_X}{d(X)} = 0.6$

Quadratic Trends: Example of x_i = Time



Quadratic Trend for Age: GSS Example

- Black line = mean for each year of age; red lines = ±1 SE of mean
- Although noisy, this plot shows a clear quadratic function of age in predicting annual income (yay middle age!)



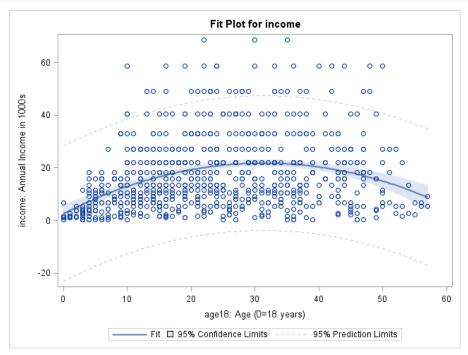
 Let's see what happens when we fit a quadratic effect of age (centered at 18, the minimum age) predicting annual income...

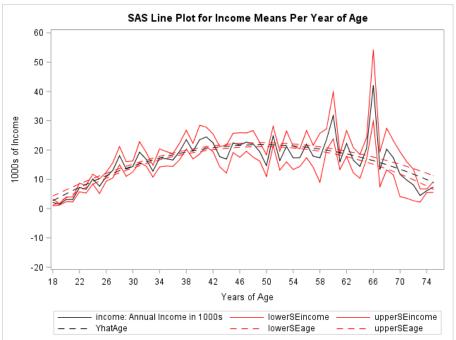
Quadratic Trend for Age: GSS Example

- $Income_i = \beta_0 + \beta_1(Age_i 18) + \beta_2(Age_i 18)^2 + e_i$
 - Intercept: β_0 = expected income at age $18 \rightarrow Est = 2.677, SE = 1.584, p < .001$
 - **Linear Age Slope:** β_1 = instantaneous rate of change (or difference, actually) in income per year of age at age = $18 \rightarrow Est = 1.2\overline{2}3$, SE = 0.135, p < .001
 - Arr Quadratic Age Slope: Arr₂ = half the rate of acceleration (or deceleration) here) per year of age at any age $\rightarrow Est = -0.020, SE = 0.003, p < .001$
- <u>Predicted income</u> at other ages via linear combinations of fixed effects:
 - > Age 30: $\hat{y}_{x=30} = 2.677 + 1.223(12) 0.020(12)^2 = 14.540, SE = 0.647$
 - > Age 50: $\hat{y}_{x=50} = 2.677 + 1.223(32) 0.020(32)^2 = 21.809, SE = 0.668$
 - > Age 70: $\hat{y}_{x=70} = 2.677 + 1.223(52) 0.020(52)^2 = 13.448, SE = 1.659$
- Predicted linear age slope at other ages via linear combinations:
 - > Age 30: $\widehat{\beta_1}_{r=30} = 1.223 0.020(2 * 12) = 0.754, SE = 0.079$
 - > Age 50: $\widehat{\beta}_{1_{x=50}} = 1.223 0.020(2 * 32) = -0.027, SE = 0.047$
 - > Age 70: $\beta_{1_{x=70}} = 1.223 0.020(2 * 52) = -0.809, SE = 0.135$
- Predicted age at maximum income (linear age slope = 0): $\frac{-\beta_1}{2*\beta_2} + 18 = 48.575$

29

Quadratic Trend for Age: GSS Example

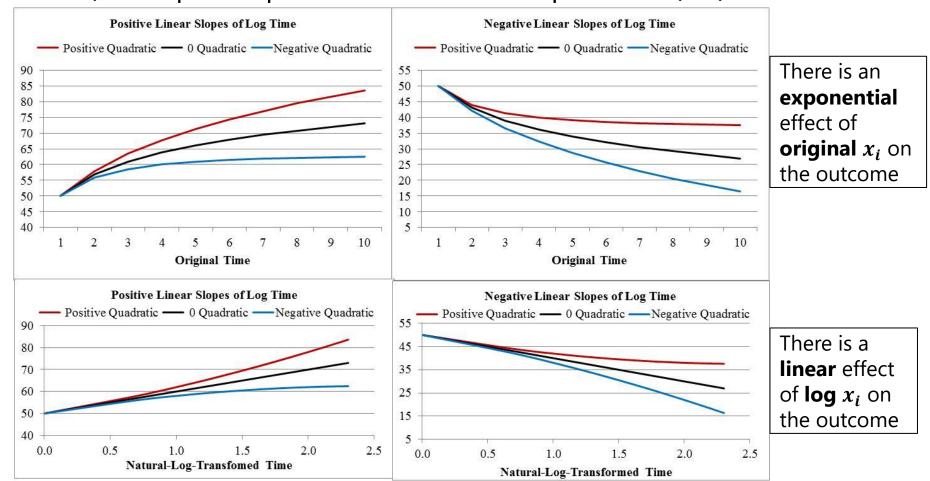




- · Left: predicted regression line over individual scatterplot
 - > From: $2.677 + 1.223(Age_i 18) 0.020(Age_i 18)^2$
- Right: predicted regression line over mean per age
 - > $F(2, 731) = 47.00, MSE = 169.00, p < .001, R^2 = .114 (r = .338)$
 - Since age and age² work together, I'd use model r as effect size

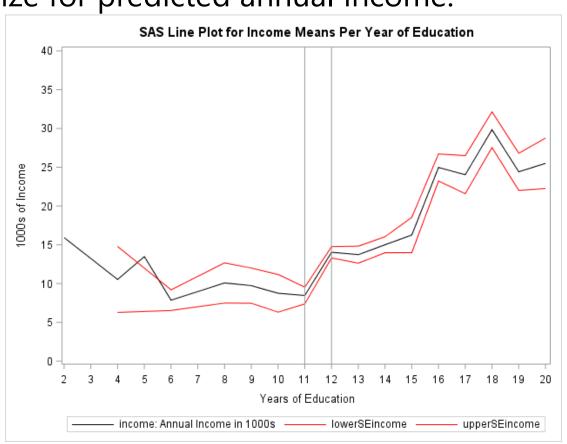
Exponential Trends: Example of x_i = Time

• A <u>linear</u> slope of log x_i (black lines) mimics an <u>exponential</u> trend across *original* x_i ; adding a quadratic slope of log x_i (red or blue lines) can speed up or slow down the exponential(ish) trend



Piecewise Slopes: GSS Example

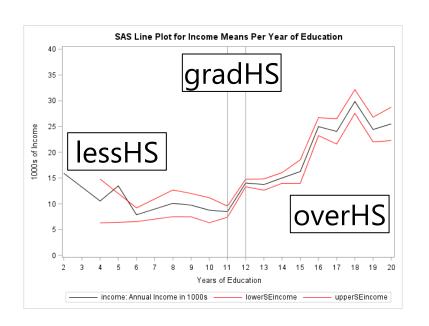
- What if the effect of "more education" varies across education?
 For example, I hypothesize for predicted annual income:
 - Less than HS degree?
 No effect of educ
 - Get HS degree? Acute "bump" relative to less than HS degree
 - More than HS degree? Positive effect of more educ (likely nonlinear)
- Plot: black line shows mean per year of educ, red lines show ± 1 SE



Piecewise Slopes Coding: GSS Example

Years Educ (x)	lessHS: Slope if x <12		gradHS: HS Grad? (0=no, 1=yes)			overHS: Slope if x >12			
9		-2			0			0	
10		-1			0		0		
11 (int)		0			0			0	
12		0			1			0	
13		0			1			1	
14		0		1				2	
15		0			1			3	
16		0			1			4	
17		0			1			5	
18		0			1			6	

- Intercept = grade 11 (when all slopes = 0)
- 3 predictors for educ:
 - lessHS: from grade 2 to 11
 - > **gradHS**: acute bump for 12+
 - overHS: after grade 12 (to 20)



Piecewise Slopes: GSS Results

After putting all three slopes in the model at the same time:

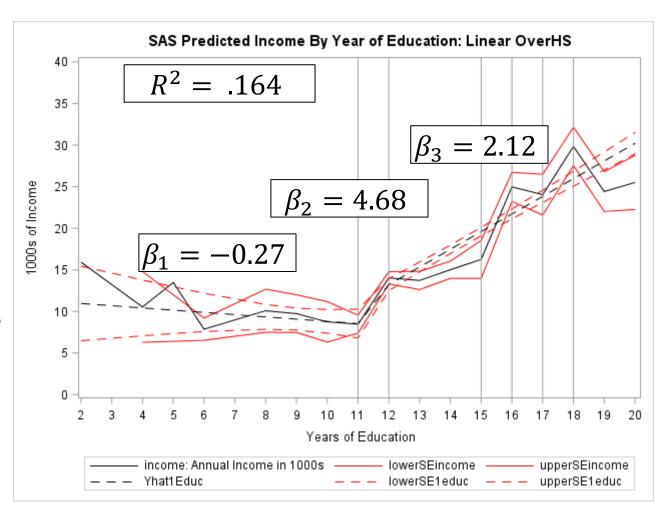
$$y_i = \beta_0 + \beta_1(lessHS_i) + \beta_2(gradHS_i) + \beta_3(overHS_i) + e_i$$

- Model: F(3, 730) = 47.84, MSE = 159.61, p < .001, $R^2 = .164$ (r = .404)
 - r = .404 is effect size for overall prediction by education (three slopes)
- β_0 = expected income when all predictors = 0 \rightarrow 11 years of ed here
 - > Est = 8.53, SE = 1.73 (significance and effect size not relevant)
- β_1 = slope for difference in income per year education from 2 to 11 years
 - Est = -0.27, SE = 0.60, t(730) = 0.65, p = .654, pr = -.017
- β_2 = acute difference (jump) in income between educ=11 and educ=12
 - Est = 4.68, SE = 1.88, t(730) = 2.05, p = .013, pr = .092
- β_3 = slope for difference in income per year education from 12 to 20 years
 - $\rightarrow Est = 2.12, SE = 0.214, t(730) = 9.94, p < .001, pr = .345$

34

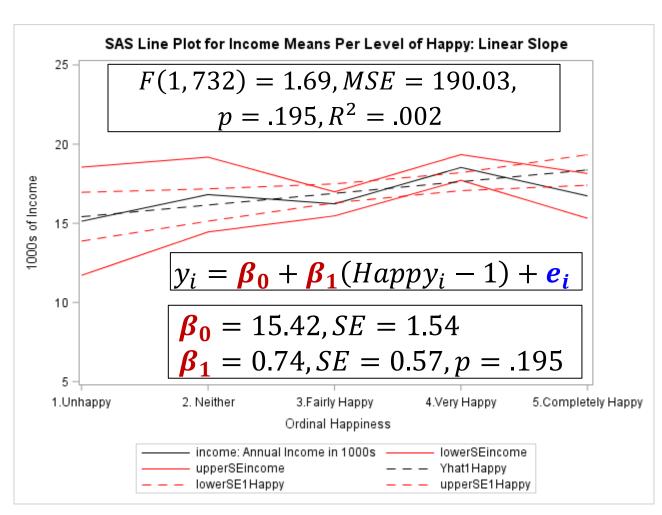
Piecewise Slopes: Linear Past 12 Years Ed?

- The model (dashed lines) appears to capture the mean trend (solid lines) pretty well until 12 years of education...
- I think we need even more piecewise slopes after ed=12!
 - > From 12 to 15
 - From 15 to 17-18
 - From 17-18 to 20



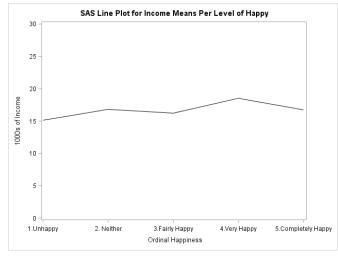
A Linear Slope for an Ordinal Predictor???

- Ordinal predictors
 with 5+ categories
 are often treated as
 interval by fitting a
 single linear slope for
 their overall effect
- We can test this interval assumption by comparing the outcome differences between adjacent predictor values
 - Here: need 4 slopes,
 1 for each transition between categories
 - ▶ Use "sequential dummy coding" to treat the predictor as "categorical"
 → 5 fixed effects used to distinguish each of 5 categories



Sequential Slopes for an Ordinal Predictor

Happy (x)	h1v2: Dif from 1 to 2		h2v3: Dif from 2 to 3		h3v4: Dif from 3 to 4		h4v5: Dif from 4 to 5		5: om 5			
1 (int)		0		0		0 0		0			0	
2		1		0		0				0		
3		1			1			0			0	
4		1			1			1			0	
5		1		1		1			1			

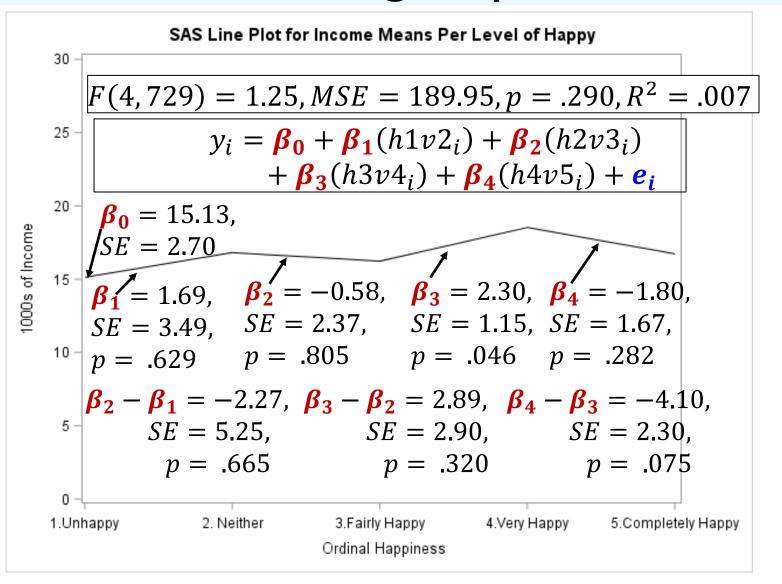


- Happy = 1 is where all slopes are 0, so it is the reference category (→ model intercept)
- The 4 slopes capture each <u>adjacent category</u> <u>difference</u> because each stays at 1 when done
 - Right: In indicator coding, the LvsM slope went back to 0, so the second slope is NOT successive (i.e., it reflects LvsU, not MvsU)

Group	LvM: Diff for Low vs Mid	LvU: Diff for Low vs Upp
Low	0	0
Mid	1	0
Upp	0	1

See p. 278 of: Darlington, R. B., & Hayes, A. F. (2016). Regression analysis and linear models: Concepts, applications, and implementation. Guilford.

Results from Testing Slope Differences



Summary: Predictors with Multiple Fixed Slopes

- There are many scenarios in which a single predictor x_i needs **multiple fixed slopes** to describe its prediction of outcome y_i :
 - ightharpoonup Predictor variables with C categories needs C-1 fixed slopes to distinguish its C possible different outcome means
 - "Indicator dummy coding" is useful for nominal predictors
 - "Sequential dummy coding" is useful for ordinal predictors
 - Should report significance and effect size for each mean difference of theoretical interest (not necessarily all possible differences, though)
 - Nonlinear effects of quantitative predictor variables (via quadratic or exponential curves; piecewise slopes or curves) may require 2+ slopes
 - Predictors work together to summarize overall "trend" of x_i (so effect size for each fixed slope may be less important than overall model \mathbb{R}^2)
- We want to know the significance of **each** fixed slope (via univariate Wald test of $(Est H_0)/SE$ via t test-statistic) as well as significance of the **model** R^2 (as multivariate Wald test via F test-statistic)
 - Model R^2 = squared Pearson r between predicted \hat{y}_i and actual y_i