On the Strategies for Disaggregating Between-Person Relations across Individual Time Slopes from Within-Person Relations in Longitudinal Data

Dr. Lesa Hoffman

Professor, Educational Measurement and Statistics College of Education, University of Iowa

Presented 10/27/22 in the Quantitative Brown Bag Series, Department of Psychology, University of California, Davis

Slides available at: https://www.lesahoffman.com/Workshops/index.html

- Sampling multiple persons over multiple occasions creates at least two distinct levels of analysis:
- Between-person variation IN means over time
 - > Are people higher on predictor *x* than other people also higher on outcome *y* than other people?
 - > "Level-2" or "macro-level" relation among person means
- Within-person variation AROUND means over time
 - > When a person is higher on predictor x than usual, are they also higher on outcome y than usual?
 - "Level-1" or "micro-level" relation among mean deviations
 - But what about within-person change over time?

- Presence of within-person (WP) change over time requires new vocabulary and new modeling strategies
- e.g., **Long-term relations** of health (x) with cognition (y) in which there is WP change over time in each variable
 - People who are healthier (than other people at time 0) may have better cognition → BP relation of intercepts (not "means")
 - People whose health declines less over time (than other people) may decline less in cognition → BP relation of WP time slopes
 - When a person feels relatively better (than predicted by their time trend), they may then also have relatively better cognition
 - WP relation of time-specific residuals (whose extent can differ BP as well)
 - Feel better *next time* instead? <u>WP "lagged" relation</u> (that can differ BP)

- "Change over time" includes ALL kinds of time trends, each of which can also show between-person (BP) variation
- e.g., **Short-term relations** of health (x) with bad mood (y)
 - People who tend to be less healthy (than other people) may tend to be grumpier than other people → BP relation of means
 - When people feel worse (than usual), they may also be grumpier (than usual) → WP relation of mean deviations
- How about a Monday effect*? It needs a WP slope, too!
 - If some people are more adversely affected by Mondays (than other people), then that <u>WP Monday slope can have BP variation!</u>
 - People who feel relatively worse on Mondays (than other people) may also be grumpier on Mondays* → BP relation of time slopes

- No matter the time scale, <u>any variable measured over time</u> has the potential for three distinct sources of variation:
 - > **BP** in some measure of overall level (mean or intercept)
 - > **BP** differences in WP slopes for time and time-varying predictors
 - > **WP** time-specific deviations from BP-predicted trajectory
- In theory each source can relate to those of other variables, but common practice has two common problems:
 - > Time-varying "outcomes" are treated differently than "predictors"
 - > "Time" may not be considered as sufficiently in short-term studies
- Result? Missing BP time slope relations will create bias!
 - > Today's demo: In WP slope main effects and lagged effects

Presentation Overview

- Introduce simulation: data generation and manipulations
- Show recovery results across different types of longitudinal models for distinguishing BP and WP sources of variance
 - > Try to link ideas, buzz words, diagrams, and equations to show what each type of model can or cannot do (well), including:
 - Univariate models with observed predictors—using personmean-centered, baseline-centered, or time-detrended predictors
 - Multivariate models with latent predictors—requiring single-level or multilevel structural equation models with "latent" change factors
 - Auto-regressive cross-lagged panel models for lagged effects
- Consider best practice in light of real-data complications
 - > e.g., Unbalanced occasions, small samples, model complexity

Simulation Data Generation

• 2 variables (x and y) with no missing data for 100 persons (Level 2; i) over 5 occasions (Level 1; t), indexed as time = (0,1,2,3,4)*

	Unconditional Model for Change		Variances
Level 1 Occasions:	$x_{tix} = \beta_{0ix} + \beta_{1ix}(Time_{tix}) + e_{tix}$ $y_{tiy} = \beta_{0iy} + \beta_{1iy}(Time_{tiy}) + e_{tiy}$		
Level 2 Intercepts:	$\beta_{0ix} = \gamma_{00x} + U_{0ix}$ $\beta_{0iy} = \gamma_{00y} + U_{0iy}$	$\gamma_{00x} = 0$ $\gamma_{00y} = 0$	$ \tau_{U_{0x}}^2 = .60 $ $ \tau_{U_{0y}}^2 = .60 $
Level 2 Time Slopes:	$\beta_{1ix} = \gamma_{10x} + U_{1ix}$ $\beta_{1iy} = \gamma_{10y} + U_{1iy}$	$\gamma_{10x} = ?$ $\gamma_{10y} = ?$	$ \tau_{U_{1x}}^2 = .06 $ $ \tau_{U_{1y}}^2 = .06 $

- Total variance set = 1 at time = 0, so that:
 - > Conditional ICC = .60 \rightarrow Intercept variance for U_{0ix} and U_{0iy}
 - > Slope Reliability = .60 \rightarrow Time slope variance for U_{1ix} and U_{1iy}

Simulation Manipulations

- Fixed time effects (γ_{10} absent or present) collapsed here
 - \succ Didn't matter because $time_{ti}$ was always a predictor of y_{ti}
- Key manipulation: match across 3 types of relationships
- Level-2 random effects (U_{0ix} , U_{0iy} , U_{1ix} , U_{1iy}) drawn from a multivariate normal distribution with 4 conditions:
 - > Intercept correlations: $r(U_{0ix}, U_{0iy}) = 0 \text{ or } .3$
 - > Time slope correlations: $r(U_{1ix}, U_{1iy}) = 0 \text{ or } .3$
 - \rightarrow All other Intercept–Time slope pairs of correlations = 0
- Level-1 **residuals** drawn from a separate multivariate normal distribution with 2 conditions: $r(e_{tix}, e_{tiy}) = 0$ or . 3

2 Longitudinal Modeling Families

- Univariate models: predict y_{ti} from observed x_{ti} predictors
 - > aka, Multilevel models (MLMs) using person-mean-centered, baseline-centered, or detrended-residual predictors
 - Estimated in any software with mixed effects (e.g., MIXED in SAS, SPSS, or STATA; LME4 or NLME in R environment)
- Multivariate models: predict both y_{ti} and x_{ti} as **outcomes**
 - \triangleright But x_{ti} can't predict y_{ti} in univariate mixed-effects software, so...
 - > Can be specified as a single-level structural equation model (SEM)
 - e.g., "Multivariate latent growth curve models" (with or without "structured residuals"); "auto-regressive cross-lagged panel models"
 - Can also be specified as a "multilevel SEM" (= multivariate MLM)
 - I will use ML estimation; Mplus "latent predictor centering" and lagged effects within "dynamic multilevel SEM" require Bayes MCMC instead

Unconditional Time Model for y_{ti} : 3 Ways

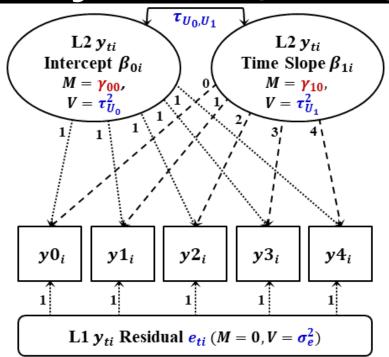
Unconditional Time Univariate Multilevel Model (long data)

L1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(Time_{ti}) + e_{ti}$$

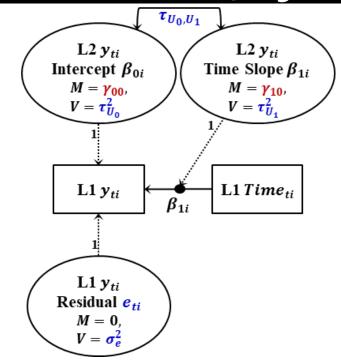
L2 Intercept: $\beta_{0i} = \gamma_{00} + U_{0i}$

L2 Time Slope: $\beta_{1i} = \gamma_{10} + U_{1i}$

As Single-Level SEM (wide data)



As Multilevel SEM (long data)



3 ways: MLM = SEM because random effects = latent variables!

Naïve Addition of Time-Varying x_{ti}

Univariate MLM: TV x_{ti} has a Smushed Effect (aka conflated, convergence, composite effect)

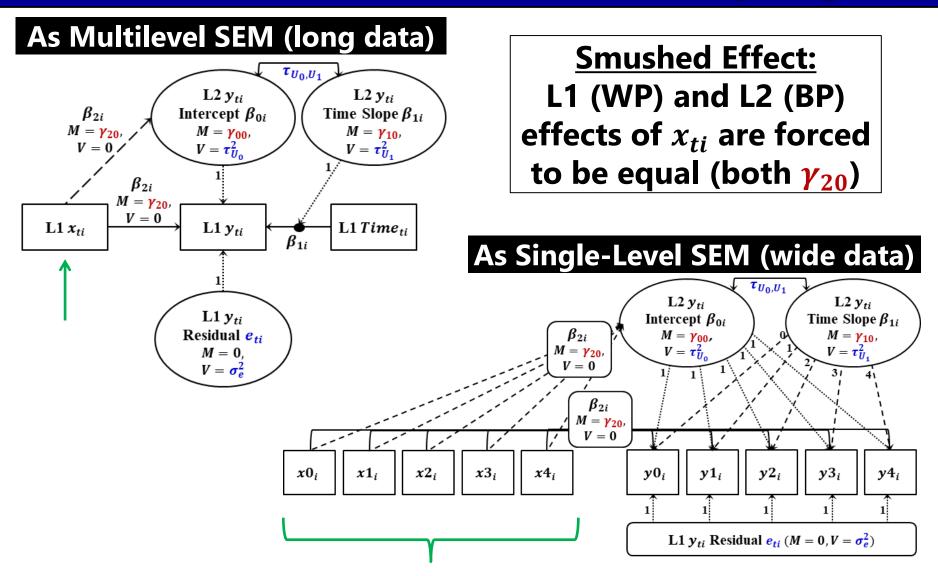
L1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(Time_{ti}) + e_{ti}$$
 L2 + $\beta_{2i}(x_{ti})$ L2

L2 Intercept: $\beta_{0i} = \gamma_{00} + U_{0i}$ L2 Time Slope: $\beta_{1i} = \gamma_{10} + U_{1i}$

L2 x_{ti} Slope: $\beta_{2i} = \gamma_{20}$

- Model is **bad news** if the L1 predictor has L2 variance (i.e., people differ in their mean of x_{ti} over time)
 - \triangleright Could also be true for the L1 $time_{ti}$ predictor! (but not here)
- Forces level-1 (WP) and level-2 (BP) x_{ti} effects to be equal, which is unlikely to be true, especially in longitudinal data!
- A predictor for x_{ti} is needed at any level it has variability

Naïve Addition of Time-Varying x_{ti}



Unsmushing the Effects of L1 x_{ti}

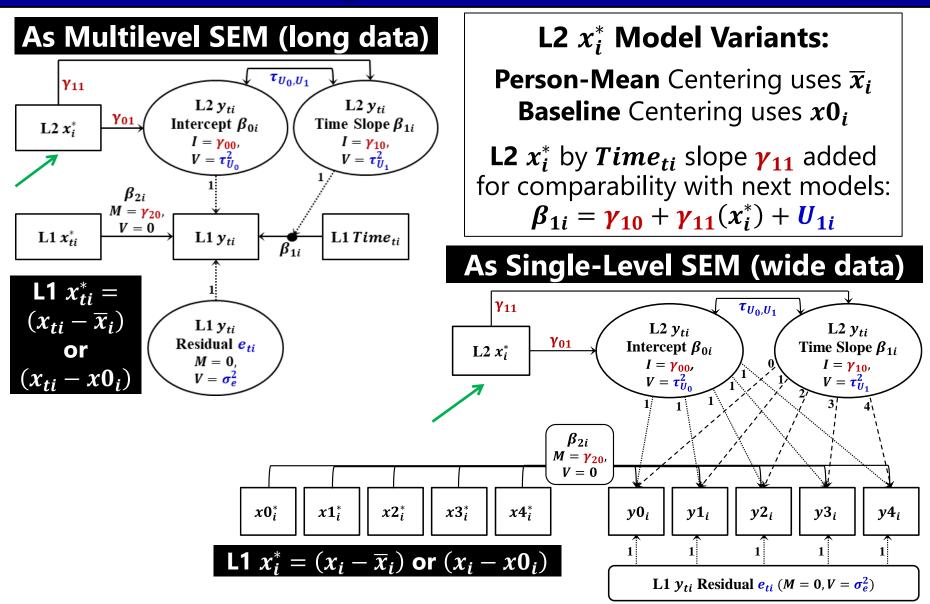
Univariate MLMs to Distinguish L2 BP and L1 WP Effects of $x_{ m ti}$

L1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(Time_{ti}) + e_{ti}$$
 L2 Time Slope: $\beta_{1i} = \gamma_{10} + U_{1i}$ L2 x_{ti} Slope: $\beta_{2i} = \gamma_{20}$

Person-Mean $+\beta_{2i}(x_{ti} - \overline{x}_i)$ L2 Int: $\beta_{0i} = \gamma_{00} + \gamma_{01}(\overline{x}_i) + U_{0i}$ (PM) Centering: $+\beta_{2i}(x_{ti} - x_{0i})$ L2 Int: $\beta_{0i} = \gamma_{00} + \gamma_{01}(x_{0i}) + U_{0i}$ (BL) Centering:

- Either way, should be: L1 $\gamma_{20} \rightarrow WP$ effect; L2 $\gamma_{01} \rightarrow BP$ effect
- L2 PM (\bar{x}_i) uses all occasions so L1 errors should cancel...
 - \triangleright ...But timing is off: x_{ti} L2 average predicts y_{ti} L2 intercept for time 0
- L2 BL $(x0_i)$ matches timing to create L2 relation at time 0...
 - \rightarrow ...But still contains L1 error (is actual $x0_i$, not predicted x_{ti} at time 0)

Unsmushing the Effects of L1 x_{ti}



Simulation Results: Univ MLMs

• How well did centering with the person mean (\bar{x}_i) or baseline $(x0_i)$ recover the 3 relations of x_{ti} with y_{ti} ?

0. L2 x_i^* by $Time_{ti}$ slope $\gamma_{11} = 0$

1. No x_{ti} L2 random time (slope $r \rightarrow 0$)

- 2. L2 intercept $r \rightarrow L2 x_i^*$ slope γ_{01}
- 3. L1 residual $r \rightarrow L1 x_{ti}^*$ slope γ_{20}

As Univariate MLM

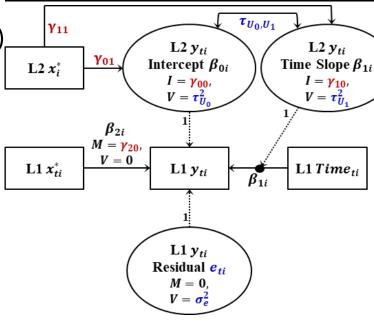
L1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(Time_{ti}) + \beta_{2i}(x_{ti}^*) + e_{ti}$$

L2 Intercept:
$$\beta_{0i} = \gamma_{00} + \gamma_{01}(x_i^*) + U_{0i}$$

L2 Time:
$$\beta_{1i} = \gamma_{10} + \gamma_{11}(x_i^*) + U_{1i}$$

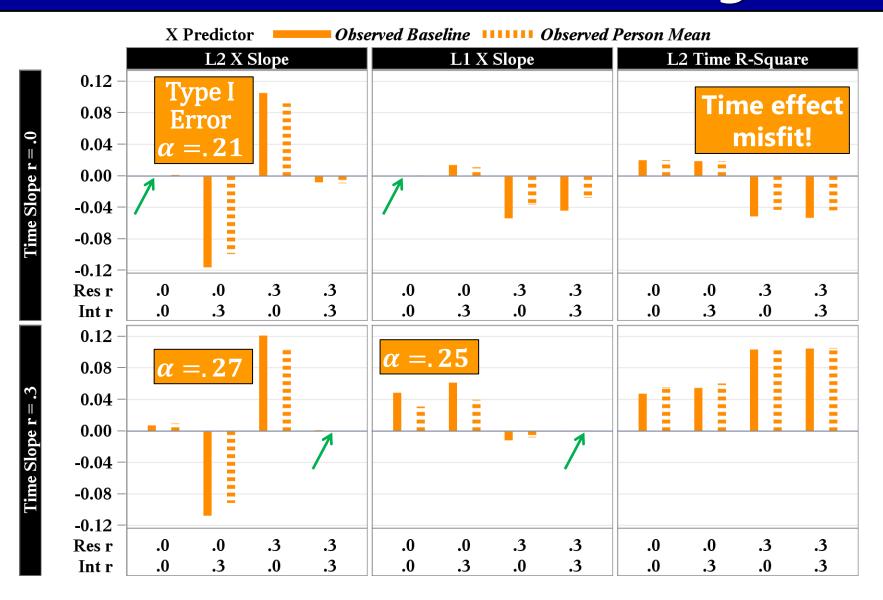
L2
$$x_{ti}$$
 Slope: $\beta_{2i} = \gamma_{20}$

As Multilevel SEM



L2
$$x_i^* = \overline{x}_i$$
 or $x0_i$
L1 $x_{ti}^* = (x_{ti} - \overline{x}_i)$
or $(x_{ti} - x0_i)$

Univ Results: Time-Smushing Bias!



Fixing Level-1 Bias... Univariately

- "Detrended residuals" is a strategy designed to remove time-related variance from the level-1 x_{ti} predictor
- Is a two-stage approach also known as "slopes-as-outcomes":
 - > Fit separate regression model to each person's data
 - > Save time-specific x_{ti} residuals to use as level-1 x_{ti}^*
 - > Save fixed intercept at time = 0 to use as level-2 x_i^*

As Univariate MLM

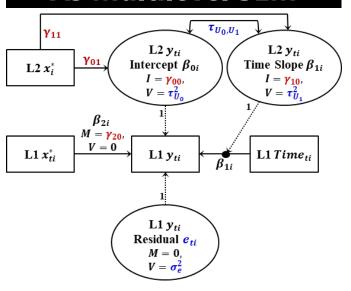
L1:
$$y_{ti} = \beta_{0i} + \beta_{1i}(Time_{ti}) + \beta_{2i}(x_{ti}^*) + e_{ti}$$

L2 Intercept:
$$\beta_{0i} = \gamma_{00} + \gamma_{01}(x_i^*) + U_{0i}$$

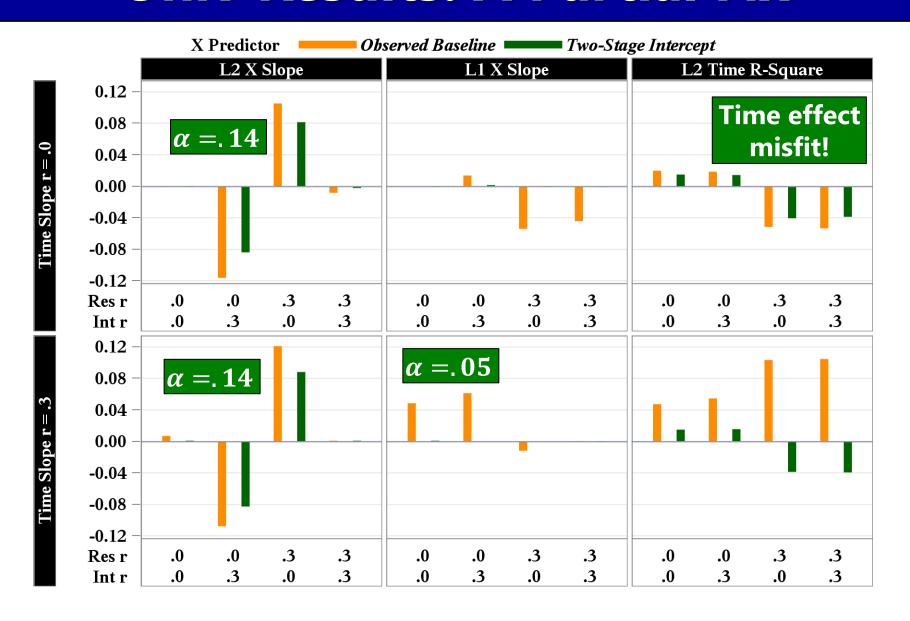
L2 Time:
$$\beta_{1i} = \gamma_{10} + \gamma_{11}(x_i^*) + U_{1i}$$

L2
$$x_{ti}$$
 Slope: $\beta_{2i} = \gamma_{20}$

As Multilevel SEM

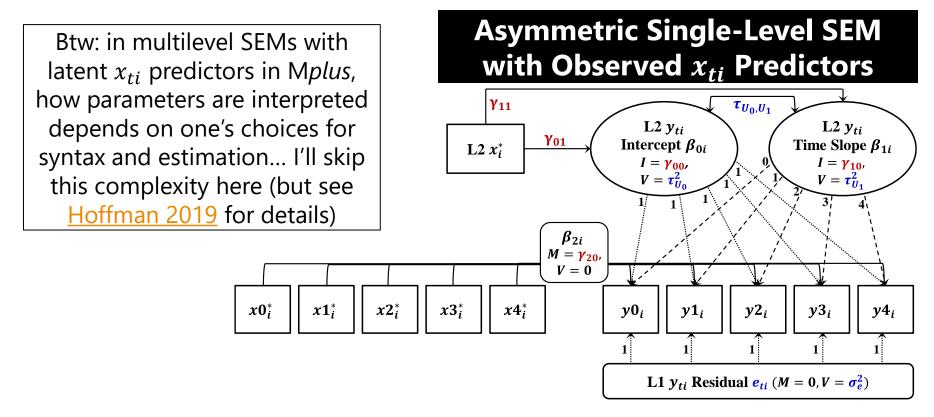


Univ Results: A Partial Fix

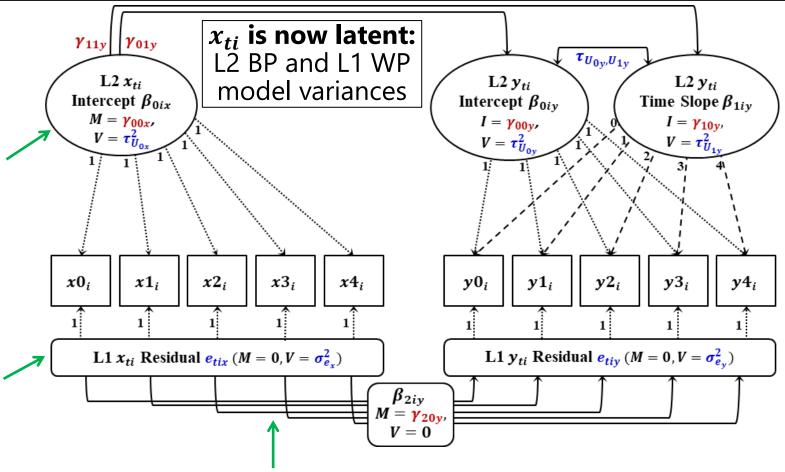


Why the asymmetry of x_{ti} and y_{ti} ?

- Why is y_{ti} treated as latent (i.e., three sources of variance partitioned by the model; in circles) while x_{ti} is observed (variance partitioned by brute-force predictors; in squares)?
- Primary benefit of multivariate models is to treat x_{ti} like y_{ti} but still be able to include **fixed effects of** x_{ti} **that predict** y_{ti}



Symmetric Single-Level SEM



- This SEM uses "**Structured Residuals**": Level-1 x_{ti} effect between the x_{ti} and y_{ti} residuals (instead of between the observed variables)
 - > Why? To get **level-2 BP effects** instead of level-2 *contextual* effects

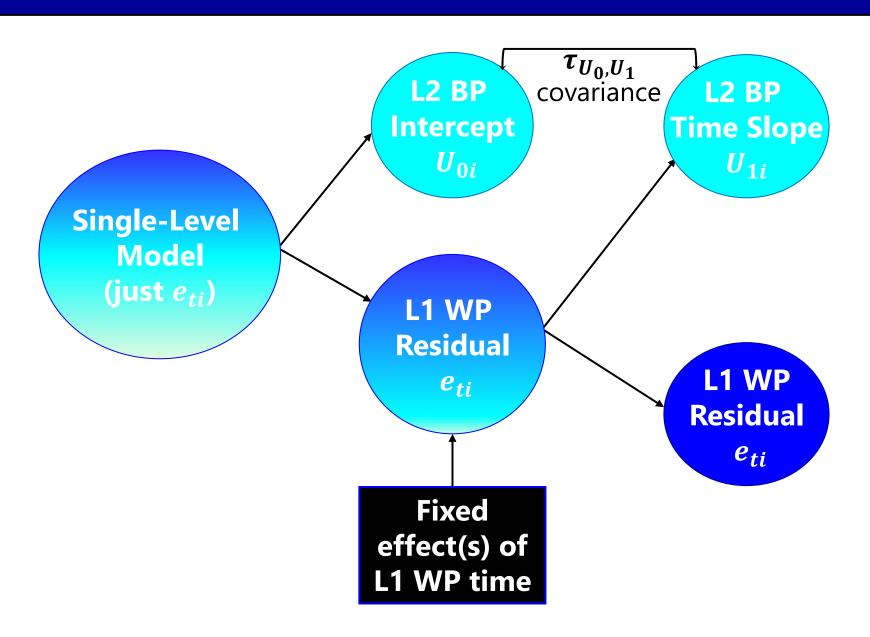
Same Symmetric Single-Level SEM as a "Truly" Multivariate MLM

Fixed Effects of Intercept and Residual of Latent x_{ti} Total: $x_{tix} = \beta_{0ix} + xw_{tix}$ w indicates a **L1** within variable $y_{tix} = \beta_{0iy} + yw_{tiy}$ **L1:** $xw_{tix} = e_{tix}$ $yw_{tiy} = \beta_{1iy}(Time_{tiy}) + \beta_{2iy}(xw_{tix}) + e_{tiy} \quad \beta_{2iy} = \gamma_{20y}$ L2 Intercepts: $\beta_{0ix} = \gamma_{00x} + U_{0ix}$ $\beta_{0iy} = \gamma_{00y} + \gamma_{01y} |(\beta_{0ix})| + U_{0iy}$ L2 Time Slopes: $\beta_{1iy} = \gamma_{10y} + \gamma_{11y} |(\beta_{0ix})| + U_{1iy}$

• So how does using **latent** x_{ti} **predictors** compare with **observed** x_{ti} **predictors** (baseline or two-stage intercept)?

Latent $x_{ti} \rightarrow$ Less Bias? Not yet...

The Source of the Problem



A "Truly" Multivariate MLM with Random Time Slopes Predicting x_{ti}

Fixed Effects of Intercept, Time Slope, and Residual of Latent x_{ti}

Total:
$$x_{tix} = \beta_{0ix} + xw_{tix}$$
 $y_{tix} = \beta_{0iy} + yw_{tiy}$ w indicates a **L1** within variable

L1:
$$xw_{tix} = \beta_{1ix}(Time_{tix}) + e_{tix}$$

 $yw_{tiy} = \beta_{1iy}(Time_{tiy}) + \beta_{2iy}(xw_{tix}) + e_{tiy}$ $\beta_{2iy} = \gamma_{20y}$

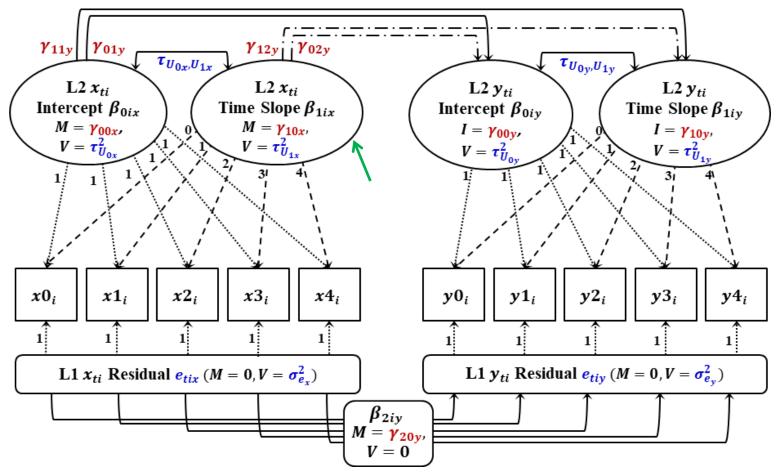
L2 Intercepts:
$$\beta_{0ix} = \gamma_{00x} + U_{0ix}$$

 $\beta_{0iy} = \gamma_{00y} + \gamma_{01y} (\beta_{0ix}) + \gamma_{02y} (\beta_{1ix}) + U_{0iy}$

L2 Time Slopes:
$$\beta_{1ix} = \gamma_{10y} + U_{1iy}$$

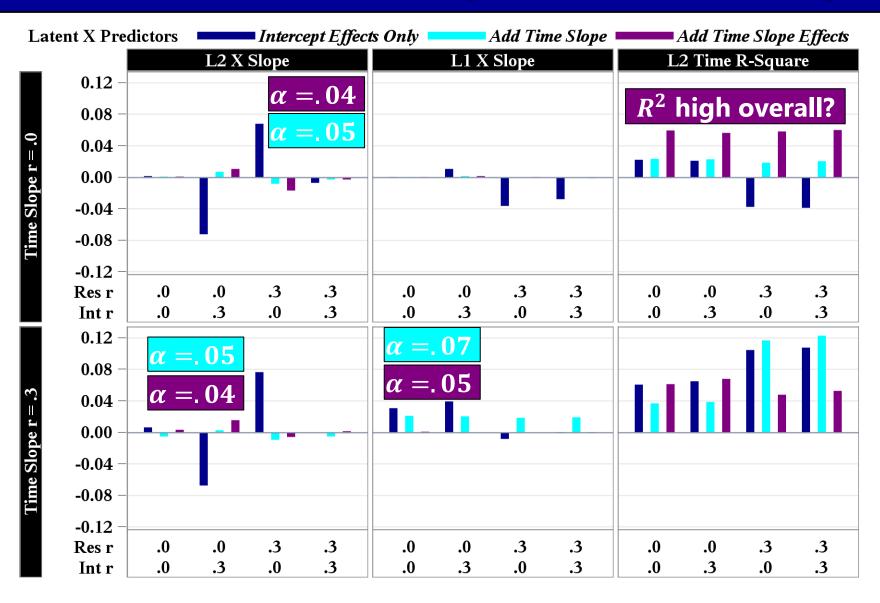
 $\beta_{1iy} = \gamma_{10y} + \gamma_{11y} (\beta_{0ix}) + \gamma_{12y} (\beta_{1ix}) + U_{1iy}$

So Just Let $Time_{tix}$ Also Predict x_{ti}

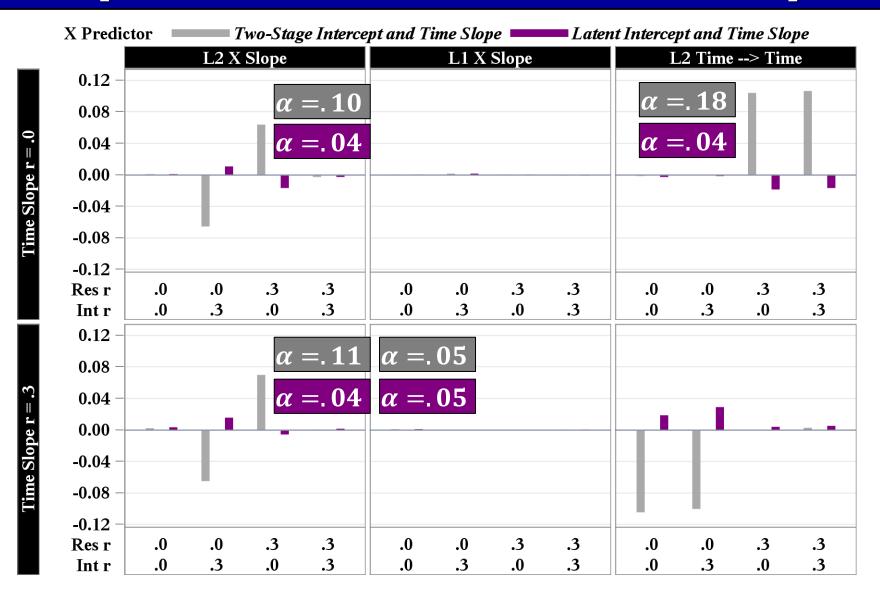


- L2 Intercept β_{0ix} is now specific to time = 0 (just like β_{0iy} has been)
- How well does this "multivariate latent growth curve model with structured residuals" recover the 3 types of relations of x_{ti} with y_{ti} ?

Results: Better! (But Not Perfect)

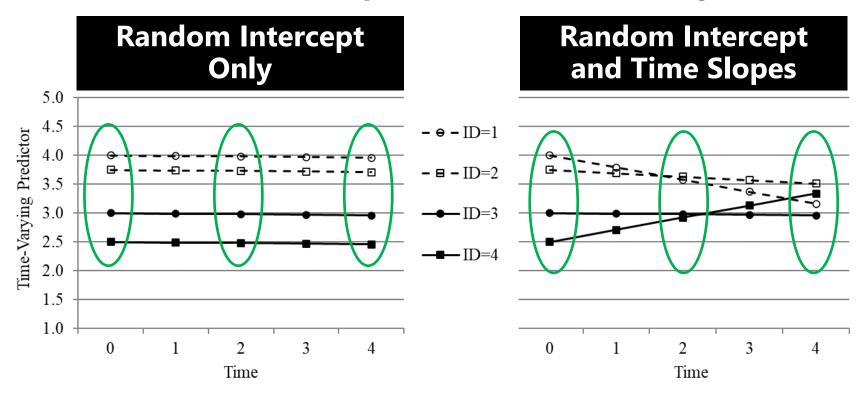


Slopes-as-Outcomes? Still Nope.



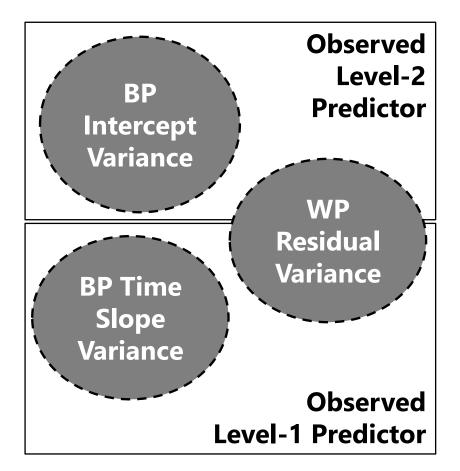
Summary: Part 1

- Ignoring relationships between the BP Time Slopes of longitudinal variables can contaminate their other relations:
 - > Such as in the **BP Intercept**—because it must change over time!



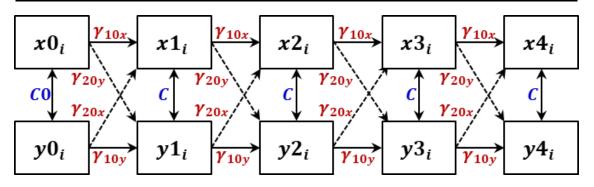
Summary: Part 1

- Ignoring relationships between the BP Time Slopes of longitudinal variables can contaminate their other relations:
 - If the WP Residual still contains the unmodeled BP time slope variance, the level-1 effect will be smushed with the missing L2 time slope effect! (bottom panel)
 - Different problem than more well-known result of intercept-smushed L1 effects (top panel)



Smushed Effects in Other Models*

Auto-Regressive Cross-Lagged Panel Model (the "ARCL" or "CLPM")



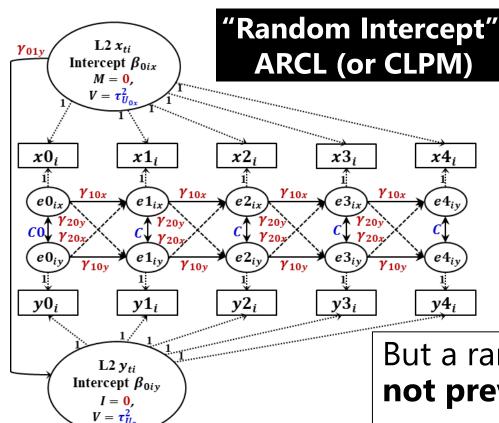
Path model with separate intercepts (and residual variances) per occasion, and lag-1 fixed effects:

$$x_{tix} = \gamma_{t0x} + \gamma_{10x}(x_{t-1i}) + \gamma_{20x}(y_{t-1i}) + e_{tix}$$

$$y_{tiy} = \gamma_{t0y} + \gamma_{10y}(y_{t-1i}) + \gamma_{20y}(x_{t-1i}) + e_{tiy}$$

- CLPM interpretation is problematic (at best):
 - > Do the γ_{10} within-variable **AR paths** really "control for stability"?
 - > Which type of relationship is given by γ_{20} cross-lagged paths?
 - > Which type of relationship is the **same-occasion** *C* **covariance**?
- * Same problems apply to mediation variants $(X \rightarrow M \rightarrow Y)$

Remedies for Intercept Smushing



Several authors have pointed out the need to distinguish constant BP effects from WP effects via:

$$x_{tix} = \gamma_{t0x} + \gamma_{10x}(x_{t-1i}) + \gamma_{20x}(y_{t-1i}) + U_{0ix} + e_{tix}$$

$$y_{tiy} = \gamma_{t0y} + \gamma_{10y}(y_{t-1i}) + \gamma_{20y}(x_{t-1i}) + U_{0iy} + e_{tiy}$$

But a random intercept alone will **not prevent time-smushing**...

Do the within-variable AR paths protect against time smushing?

Let's find out!

Simulation: Adding CLPM Terms

Full Model: L2 Latent Intercept and Time Slope Effects, L1 Within-Variable AR Paths, and L1 Cross-Lagged Paths

Total:
$$x_{tix} = \beta_{0ix} + xw_{tix}$$

 $y_{tix} = \beta_{0iy} + yw_{tiy}$ w indicates a **L1** within variable

L1:
$$xw_{tix} = \gamma_{10x}(x_{t-1i}) + \gamma_{20x}(y_{t-1i}) + \beta_{3ix}(Time_{tix}) + e_{tix}$$

 $yw_{tiy} = \gamma_{10y}(y_{t-1i}) + \gamma_{20y}(x_{t-1i}) + \beta_{3iy}(Time_{tiy}) + e_{tiy}$

L2 Intercepts:
$$\beta_{0ix} = \gamma_{00x} + U_{0ix}$$
$$\beta_{0iy} = \gamma_{00y} + \gamma_{01y}(\beta_{0ix}) + U_{0iy}$$

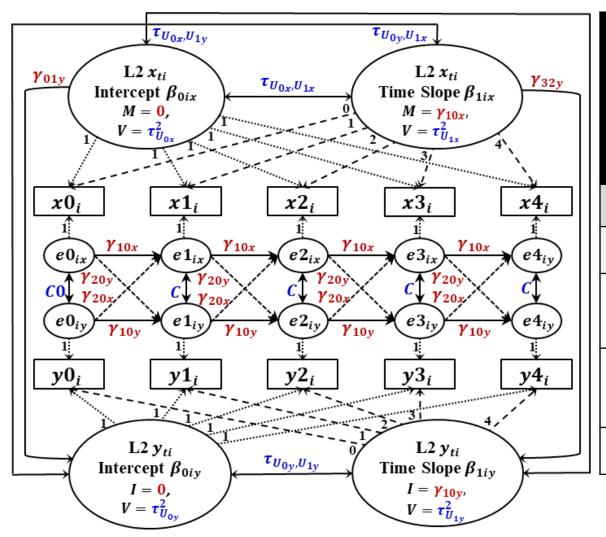
Intercept → Intercept

L2 Time Slopes:
$$\beta_{3ix} = \gamma_{30y} + U_{3iy}$$
 Time slope $\beta_{3iy} = \gamma_{30y} + \gamma_{32y} (\beta_{1ix}) + U_{3iy}$ Time slope

Time slope →

- All L1 AR paths and cross-lagged paths had pop values = 0
- Also estimated (but with Pop=0): all L2 Intercept—Time slope covariances; all L1 lag-0 residual covariances (equal after time 0)

Comparison: CLPM Variants



← Full Model:
L2 Latent Intercept*
and Time Slope Effects,
L1 AR Paths, and
L1 Cross-Lag Paths*

Drop Time Slope effect

Drop Time Slope, too

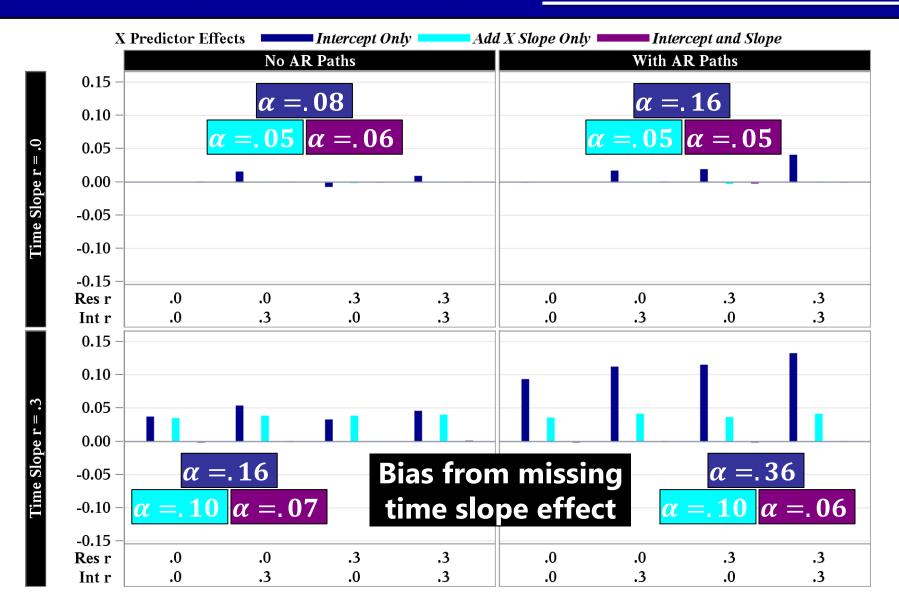
Drop Time Slope effect; drop L1 AR paths

Drop Time Slope, too; drop L1 AR paths

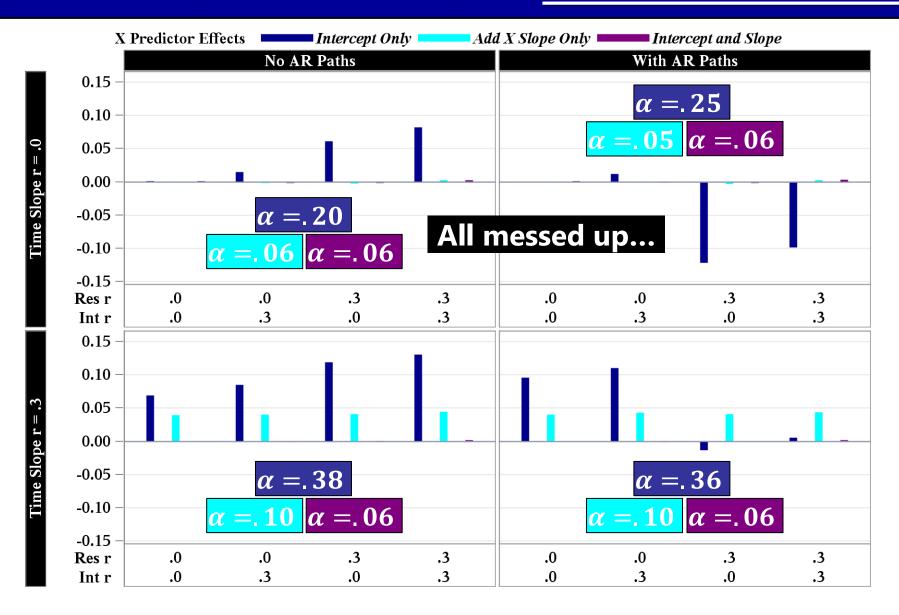
^{*} Always modeled

CLPM Results: Bias in L1 AR Paths

CLPM Results: Bias in L1 X -> Y Paths



CLPM Results: Bias in L1 Y -> X Paths



Summary: Part 2

- Ignoring relationships between the BP Time Slopes of longitudinal variables can contaminate AR and CL relations:
 - For the L1 AR path of the predictor with the unmodeled time slope—because it's trying (unsuccessfully) to account for the nonconstant L1 residual correlation over time!
 - For the L1 cross-lagged paths—which try to compensate for the missing L1 residual path (that was a covariance instead), the missing L2 time slope effect, and any biased L1 AR paths
 - > Modification indices will never get to the real problem...
 - > The Point: WP questions of "which came first" cannot be answered reliably until BP model is properly specified

- BP time-slope smushing is a potential problem in longitudinal studies over ANY TIME SCALE!
 - > "Time" is a more obvious predictor of long-term development
 - > "Time" is a less obvious predictor of short-term WP fluctuation
- e.g., L1 days within L2 persons
 - > L1 Time = **day of study** for reactivity to measurement?
 - > L1 Time = **day of week** for work or family routines?
- e.g., L1 occasions during the day (in L2 days in L3 persons)
 - > L1 Time = **time since waking** for circadian rhythms?
 - > L1 Time = **time at work** for functional rhythms?
 - > Still need to consider L2 time (day of study, day of week...)

- Treat time-varying "predictors" and "outcomes" the same by starting with univariate models for each to explore *time*:
 - > Consider design-informed **fixed effects** of time at ALL relevant levels
 - > Consider corresponding **random effects** of time at ALL upper levels
 - > Consider remaining **residual relations** (e.g., of adjacent occasions)
- Any predictor with a random time slope needs to be treated as another outcome in a multivariate model
 - ▶ i.e., as latent predictor → model-based partitioning of variances
- Predictors with fixed effects of time only (no random time)?
 - Time is controlled for—if you include those effects in outcome model
 - Do have choice of using observed or latent predictor variables...

Using <u>latent</u> instead of <u>observed</u> predictors means:

- ➤ Smaller level-2 samples and smaller ICCs → noisier results
- ➤ SEM: No REML estimation and no denominator DF options
 → too small L2 variances and associated fixed effect SEs
- ▶ Interactions of latent variables → greater estimation complexity
- ➤ Non-normal level-1 variables → greater estimation complexity
- Can Bayes fix it? The jury is still out...
 - > If your priors know the right answer, sure!
 - > If your variance priors are "too diffuse", bad news!
 - > Point estimates for variances: apples and oranges?
 - > Useful as alternative to ML given 1 estimation complexity

- But using <u>observed</u> instead of <u>latent</u> predictors means:
 - > **Ignoring BP differences in unreliability** (i.e., caused by differing numbers of occasions or differential WP variance)
 - ➤ Result is "Lüdke's bias" → too-small level-2 effects (for intercept)
- Can two-stage approaches get around this? Not likely*
 - "Slopes-as-outcomes" cannot be recommended for anything other than time-detrending residuals (but why do just that?)
 - Saved intercepts and time slopes did not provide accurate results here
 - * Corrections for unreliability may have more promise...
- Choosing a software option for latent predictors in multivariate MLMs: Single-level or multilevel SEM...

Single-Level vs. Multilevel SEM for Fitting Multivariate MLMs

Single-level SEM is designed for balanced occasions:

- > All persons share **common measurement schedule** (or close enough)
- > Absolute fit tests are possible given saturated model covariance matrix
- > Availability of random WP non-time slopes varies by software
- Structured residuals can create level-2 BP effects only in some cases

Multilevel SEM is more flexible for unbalanced occasions:

- Much more realistic, especially for studying short-term fluctuations
- But no absolute fit tests are provided without a saturated model!
- > Btw, "dynamic" multilevel SEM (in M*plus* terms) just adds options for fitting lagged effects of latent predictors (across rows) with missing data
- > Pay attention to centering methods, especially given random slopes!
 - See Hoffman (2019): EXACT SAME SYNTAX gives different versions of the level-2 parameters when estimated using ML vs Bayes in Mplus 8.0+!
 - This can lead to inadvertent smushing of all kinds using ML... be careful!

Thank you! Suggested Readings:

- Berry, D., & Willoughby, M. (2017). On the practical interpretability of cross-lagged panel models: Rethinking a developmental workhorse. Child Development, 88(4), 1186-1206.
- Curran, P. J., & Bauer, D.J. (2011). The disaggregation of within-person and between-person effects in longitudinal models of change. Annual Review of Psychology 62(1), 583-619.
- Curran, P. J., Howard, A. L., Bainter, S. A., Lane, S. T., & McGinley, J. S. (2014). The separation of between-person and within-person components of individual change over time: A latent curve model with structured residuals. *Journal of Consulting and Clinical Psychology*, 82(5), 879-894.
- De Haan-Rietdijk, S., Kuppens, P., & Hamaker, E. L. (2016). What's in a day? A guide to decomposing the variance in intensive longitudinal data. *Frontiers in Psychology: Quantitative Psychology and Measurement*, 7, Article 891: https://doi.org/10.3389/fpsyg.2016.00891
- Hoffman, L. (2015). Longitudinal analysis: Modeling within-person fluctuation and change. New York, NY: Routledge Academic.
- Hoffman, L. (2019). On the interpretation of parameters in multivariate multilevel models across different combinations of model specification and estimation. *Advances in Methods and Practices in Psychological Science*, *2*(3), 288-311.
- Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T., & Muthén, B. (2008). The multilevel latent covariate model: A new, more reliable approach to group-level effects in contextual studies. *Psychological Methods*, *13*(3), 203-229.
- McNeish, D., & Hamaker, E. L. (2020). A primer on two-level dynamic structural equation models for Intensive Longitudinal Data in Mplus. *Psychological Methods*, 25(5), 610-635.