
Generalized Multilevel Models 

for Two-Level Nested Data
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• Topics:

➢ Clarifying distribution terminology

➢ 3 parts of a generalized (multilevel) model

➢ Single-level models for categorical outcomes

➢ Complications for generalized multilevel models

➢ A brief tour of other kinds of generalized models



Clarifying Distribution Terminology
• The MLM variants we’ve seen so far all fit under the “general” 

(→ all normal distributions) linear mixed model family:

➢ G matrix: Variances and covariances of level-2 random effects (denoted 

with 𝑼𝒄), which are assumed multivariate normal over clusters

➢ R matrix: Variances and covariances of level-1 residuals (denoted with 

𝒆𝒑𝒄), which are assumed multivariate normal (over persons & clusters)

• e.g., a random slope for cluster-MC

𝑾𝑪𝒑𝒄 for four persons in a cluster:

L1:  𝒚𝒑𝒄 = 𝜷𝟎𝒄 + 𝜷𝟏𝒄(𝑾𝑪𝒙𝒑𝒄) + 𝒆𝒑𝒄   

L2:  𝜷𝟎𝒄 = 𝜸𝟎𝟎 + 𝜸𝟎𝟏(𝑪𝑴𝒙𝒄) + 𝑼𝟎𝒄  

      𝜷𝟏𝒄 = 𝜸𝟏𝟎 + 𝑼𝟏𝒄

PSQF 6272: Lecture 6 2    

2
e

2
e

2
e

2
e

σ 0 0 0

0 σ 0 0

0 0 σ 0

0 0 0 σ

 
 
 
 
 
 
 

Level-2 

G matrix: 

TYPE=UN

Level-1 R matrix: 

TYPE=Diagonal

0 10

01 1

2
U U

2
U U

τ τ

τ τ

 
 
  



Same Model for 𝐿1𝑛 = 4 in One Cluster
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Composite Model: 𝜸𝟎𝟎 + 𝜸𝟎𝟏 𝑪𝑴𝒙𝒄 + 𝜸𝟏𝟎 𝑾𝑪𝒙𝒑𝒄 + 𝑼𝟎𝒄 + 𝑼𝟏𝒄 𝑾𝑪𝒙𝒑𝒄  + 𝒆𝒑𝒄

𝐗c = 𝐿1𝑛 × 𝑘 values of 

predictors with fixed 

effects, so can differ by 

cluster (𝑘 = 3 here)

𝛄 = 𝑘 × 1 estimated fixed 

effects → same for all 

clusters (𝑘 = 3 here)

𝐙c = 𝐿1𝑛 × 𝑢 values of 

predictors with random 

effects, so can differ by 

cluster (𝑢 = 2 here)

𝐔c = 𝑢 × 2 estimated 

cluster-specific random 

effects (here, 𝑼𝟎𝒄 and 𝑼𝟏𝒄)

𝐄c = 𝐿1𝑛 × 𝐿1𝑛 person-

specific cluster residuals



L1:  𝒚𝒑𝒄 = 𝜷𝟎𝒄 + 𝜷𝟏𝒄(𝑾𝑪𝒙𝒑𝒄) + 𝒆𝒑𝒄   

L2:  𝜷𝟎𝒄 = 𝜸𝟎𝟎 + 𝜸𝟎𝟏(𝑪𝑴𝒙𝒄) + 𝑼𝟎𝒄  

      𝜷𝟏𝒄 = 𝜸𝟏𝟎 + 𝑼𝟏𝒄

• 𝛍𝐜 = 𝐗𝐜𝛄 = conditional mean from fixed effects of 𝐘 for cluster 𝑐

• The “marginal” distribution of total 𝐘 column is:   𝐘 ~ 𝑁(𝐗𝛄, 𝐕)

• The “conditional” distribution of total 𝐘 column is:  𝐘|𝐔 ~ 𝑁(𝐗𝛄 + 𝐙𝐔, 𝐑)

➢ Conditional = after controlling for both fixed and random effects

➢ Marginal and conditional “general” MLMs both have same multivariate normal 

distribution (which makes ML estimation relatively straightforward)

Clarifying Distribution Terminology
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Model for the Variance creates 𝐕𝐜 as:
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Clarifying Terminology

• Conditional distribution:  𝐘|𝐔 ~ 𝑁(𝐗𝛄 + 𝐙𝐔, 𝐑)

• Distribution of level-1 residuals:  𝐄 = 𝐘 − 𝐗𝛄 + 𝐙𝐔,  𝐄~𝑁(𝟎, 𝐑)

• Thus far in “general” MLms, we could have used the terms 

“level-1 residual distribution” and “conditional distribution” 

interchangeably (and I have used the former)

➢ “Level-1 residual distribution” is assumed multivariate normal

➢ Therefore “conditional distribution” is assumed multivariate normal

• This will not be the case for outcomes with non-normal 

distributions (and thus, non-normal conditional distributions)

➢ Level-1 residual variance may not be estimated, even though we still 

expect the conditional model predictions to be imperfect
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Dimensions for Organizing Models
• Outcome type: General (normal) vs. Generalized (not normal)

• Dimensions of sampling: One (so one variance term per outcome) vs. 

Multiple (so multiple variance terms per outcome) → OUR WORLD

• General Linear Models: conditionally normal outcome distribution, 

fixed effects (identity link; only one dimension of sampling)

• Generalized Linear Models: any conditional outcome distribution, 

fixed effects through link functions, no random effects (one dimension)

• General Linear Mixed Models: conditionally normal outcome distribution, 

fixed and random effects (identity link, but multiple sampling dimensions)

• Generalized Linear Mixed Models: any conditional outcome distribution, 

fixed and random effects through link functions (multiple dimensions)

• “Linear” means fixed effects predict the link-transformed conditional mean 

(𝜇) of DV in a linear combination of (effect*predictor) + (effect*predictor)…

PSQF 6272: Lecture 6 6    

Note: Least 

Squares is 

only for GLM



Generalized Linear Models
• Generalized linear models: link-transformed conditional 

mean is predicted instead; ML estimator uses not-normal 

conditional distributions in the outcome data likelihood

➢ Level-1 conditional model uses some not-normal distribution that may 

not have a residual variance, but level-2 random effects are still MVN

➢ What follows starts with a single-level generalized model for now

• Many kinds of non-normally distributed outcomes have some 

kind of generalized linear model to go with them via ML:

➢ Categorical: binary, ordinal (ordered), or nominal (unordered)

➢ Counts (discrete, positive values)

➢ Censored (piled up and cut off at one end)

➢ Zero-inflated (pile of 0’s, then some distribution after)

➢ Continuous but skewed (long tail)
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3 Parts of Generalized Linear Models

1. Non-normal conditional distribution of 𝒚𝒊:

➢ General linear models use a normal conditional distribution to describe 

the 𝑦𝑖 variance remaining after prediction via the fixed effects → we call 

this residual variance, which is estimated separately and usually 

assumed constant across observations (unless modeled otherwise)

➢ Other distributions are more plausible for categorical/bounded/skewed 

outcomes, so ML function maximizes the likelihood using those instead

➢ Btw, not all conditional distributions will have a single, separately 

estimated residual variance (e.g., binary → Bernoulli, count → Poisson)

➢ Agresti calls this part the “random component” (but ≠ random effects!)

➢ Why care? To get the most correct standard errors for fixed effects 
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3 Parts of Generalized Linear Models

2. Link Function = 𝒈(⋅): How the conditional mean to be predicted is 

transformed so that the model predicts an unbounded outcome instead

➢ Inverse link 𝒈−𝟏(⋅)= how to go back to data-scale conditional mean

➢ Predicted outcomes (found via inverse link) will then stay within bounds

➢ e.g., binary outcome: conditional mean to be predicted is probability 

of 𝒚𝒊 = 𝟏, so the model predicts a linked version (when inverse-linked, 

the predicted probability outcome will stay between 0 and 1)

➢ e.g., count outcome: conditional mean is expected count, so the log of 

the expected count is predicted so that the expected count stays > 0

➢ e.g., normal outcome: an “identity” link function (𝑦𝑖 * 1) is used given 

that the conditional mean to be predicted is already unbounded
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3 Parts of Generalized Linear Models

3. Linear Predictor: How the fixed and random effects of predictors 

combine additively to predict a link-transformed conditional mean

➢ This is the same as usual, except the linear predictor directly predicts 

the link-transformed (model-scale) conditional mean, which we then 

convert (via inverse link) back into the data-scale conditional mean

▪ e.g., predict logit of probability directly, but inverse-link back to probability

▪ e.g., predict log of expected count, but inverse-link back to expected count

➢ That way we can still use the familiar “one-unit change” language to 

describe effects of model predictors (on the linked conditional mean)

➢ Fixed effects are no longer determined—they now must be found 

through the ML algorithm, the same as any variance-related parameters
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Normal GLM for Binary Outcomes?
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• Let’s say we have a single binary (0 or 1) outcome…

• Mean of a binary outcome is the proportion of 1 values

➢ So given each person’s predictor values, the model tries to predict 

the conditional mean: the probability of having a 1: 𝒑(𝒚𝒊 = 𝟏)

▪ The conditional mean has more possible values than the outcome!

➢ What about a GLM???  𝒑(𝒚𝒊 = 𝟏) = 𝜷𝟎 + 𝜷𝟏(𝒙𝟏𝒊) + 𝜷𝟐(𝒙𝟐𝒊) + 𝒆𝒊

▪ 𝜷𝟎 = expected probability of 𝒚𝒊 = 𝟏 when all predictors = 0

▪ 𝜷’s = expected change in 𝒑(𝒚𝒊 = 𝟏) for per unit change in predictor

▪ 𝒆𝒊 = difference between observed and predicted binary values

➢ Model becomes 𝒚𝒊 = (𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐨𝐟 𝟏)  +  𝒆𝒊

➢ What could possibly go wrong?



Normal GLM for Binary Outcomes?
• Problem #1: A linear relationship between 𝑥𝑖 and 𝑦𝑖??? 

• Probability of a 1 is bounded between 0 and 1, but predicted 

probabilities from a linear model aren’t going to be bounded 

• Linear relationship needs to shut off → made nonlinear
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Generalized Models for Binary Outcomes
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• Solution to #1: Rather than predict 𝒑𝒓𝒐𝒃(𝒚𝒊 = 𝟏) directly, the model 
transforms it into an unbounded outcome using a link function:

➢ Step 1: Transform probability into odds: 
𝑝𝑖

1−𝑝𝑖
=

prob 𝑦𝑖=1

prob(𝑦𝑖=0)

▪ If 𝑝 𝑦𝑖 = 1 = .7 then Odds(1) = 2.33; Odds(0) = 0.429

▪ But odds scale is skewed, asymmetric, and ranges 0 to +∞ → Not a good outcome!

➢ Step 2: Take natural log of odds → “logit” link:  𝐋𝐨𝐠
𝒑𝒊

𝟏−𝒑𝒊

▪ If 𝑝 𝑦𝑖 = 1 = .7, then Logit(1) = 0.846; Logit(0) = −0.846

▪ Logit scale is now symmetric about 0, range is ±∞ → Now a good outcome to predict!



Image borrowed from Figure 17.3 of: Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: 

An introduction to basic and advanced multilevel modeling (2nd ed.). Sage.
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Solution #1:  Probability into Logits

• A Logit link is a nonlinear transformation of probability:

➢ Equal intervals in logits are NOT equal intervals of probability

➢ Logits range from ±∞ and are symmetric around prob = .5 (→ logit = 0)

➢ Now we can use a linear model → The model will be linear with respect to 

the predicted logit, which translates into a nonlinear prediction with respect to 

probability → the outcome conditional mean shuts off at 0 or 1 as needed

Probability: 

𝒑(𝒚𝒊 = 𝟏)

Logit 

(log odds): 

𝐋𝐨𝐠
𝒑𝒊

𝟏−𝒑𝒊

Zero-point on 

each scale:

Prob = .5

Odds = 1

Logit = 0
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Odds:
𝒑𝒊
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Normal GLM for Binary Outcomes?
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Mean (𝑝)

Variance

Mean and Variance of a Binary Variable

• What about a GLM?  𝒑(𝒚𝒊 = 𝟏) = 𝜷𝟎 + 𝜷𝟏(𝒙𝟏𝒊) + 𝜷𝟐(𝒙𝟐𝒊) + 𝒆𝒊

• If 𝒚𝒊 is binary, then 𝒆𝒊 can only be 2 things:  𝒆𝒊 = 𝒚𝒊 − ෝ𝒚𝒊

➢ If 𝒚𝒊 = 0 then 𝒆𝒊 
= (0 − predicted probability)

➢ If 𝒚𝒊 = 1 then 𝒆𝒊= (1 − predicted probability)

• Problem #2a: So the residuals can’t be normally distributed

• Problem #2b: The residual variance can’t be constant over ෝ𝒚𝒊 
as in GLM because the mean and variance are dependent

➢ Variance of binary variable: 𝑽𝒂𝒓 𝒚𝒊 = 𝒑 ∗ (𝟏 − 𝒑)



Top image borrowed from: https://en.wikipedia.org/wiki/Normal_distribution 

Bottom image borrowed from: https://www.boost.org/doc/libs/1_70_0/libs/math/doc/html/math_toolkit/dist_ref/dists/bernoulli_dist.html
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Solution to #2:  Bernoulli Distribution
• Rather than using a normal conditional distribution for the 

outcome, we will use a Bernoulli conditional distribution
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3 Scales of Predicted Binary Outcomes
• Logit:  𝐋𝐨𝐠

𝒑(𝒚𝒊=𝟏)

𝟏−𝒑(𝒚𝒊=𝟏)
= 𝜷𝟎 + 𝜷𝟏(𝒙𝟏𝒊) + 𝜷𝟐(𝒙𝟐𝒊)

➢ Predictor effects are linear and additive like in GLM, but 

𝜷 = difference in logit per unit difference in predictor

• Odds:  
𝒑(𝒚𝒊=𝟏)

𝟏−𝒑(𝒚𝒊=𝟏)
= 𝒆𝒙𝒑 𝜷𝟎 + 𝜷𝟏𝒙𝟏𝒊 + 𝜷𝟐𝒙𝟐𝒊

• Probability:     𝒑 𝒚𝒊 = 𝟏 =
 𝒆𝒙𝒑 𝜷

𝟎
+𝜷

𝟏
𝒙𝟏

𝒊
+𝜷

𝟐
𝒙𝟐

𝒊

𝟏+𝒆𝒙𝒑 𝜷
𝟎
+𝜷

𝟏
𝒙𝟏

𝒊
+𝜷

𝟐
𝒙𝟐

𝒊

or equivalently  𝒑 𝒚𝒊 = 𝟏 =
𝟏

𝟏+𝒆𝒙𝒑 −𝟏(𝜷
𝟎
+𝜷

𝟏
𝒙𝟏

𝒊
+𝜷

𝟐
𝒙𝟐

𝒊
)

• This is usually called a “logistic regression” model
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Converting Across the 3 Scales

• e.g., for 𝐋𝐨𝐠
𝒑(𝒚𝒊=𝟏)

𝟏−𝒑(𝒚𝒊=𝟏)
= ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒙𝟏𝒊) + 𝜷𝟐(𝒙𝟐𝒊)

  

• You can unlogit the model-predicted conditional mean all the way back 
into probability to express predicted outcomes, but you can only unlogit 
the slopes back into odds ratios (not all the way back to probability)

• Order of operations: build predicted logit outcome, then → probability
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Direction Conditional 

Mean

Slope 

for 𝒙𝟏𝒊

Slope 

for 𝒙𝟐𝒊

Using logits to predict 

probability (i.e., the “link”):
ෝ𝒚𝒊 𝜷𝟏 𝜷𝟐

From logits to odds (or 

odds ratios for effect sizes):

Odds: 

𝐞𝐱𝐩(ෝ𝒚𝒊)
Odds ratio: 

𝐞𝐱𝐩(𝜷𝟏)
Odds ratio:

𝐞𝐱𝐩(𝜷𝟐)

From logits to probability 

(i.e., the “inverse link”):

𝐞𝐱𝐩(𝒚𝒊)

𝟏 + 𝐞𝐱𝐩(ෝ𝒚𝒊)

Doesn’t 

make any 

sense!

Doesn’t 

make 

any sense!



Image borrowed from: https://en.wikipedia.org/wiki/Logistic_distribution
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Intercepts (𝛽0) vs. Thresholds (−𝛽0)
• This model is sometimes expressed by calling the logit(𝒚𝒊) 

an underlying continuous (“latent”) response of 𝒚𝒊
∗ instead:

       

       Empty Model: 𝒚𝒊
∗ = −𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 + 𝒆𝒊

➢ In which 𝒚𝒊 = 𝟏 if 𝑦𝑖
∗ > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , or 𝒚𝒊 = 𝟎 if 𝑦𝑖

∗ ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

So when predicting 𝒚𝒊
∗, then 

𝑒𝑖  ~ Logistic 0, 𝝈𝒆
𝟐 = 3.29

Logistic Distribution:

Mean = μ, Variance = 
𝜋2

3
𝑠2, 

where s = scale factor that 

allows for “over-dispersion” 

(must be fixed to 1 in binary 

outcomes for identification)

Logistic 

Distributions
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𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 =
𝒊𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 𝜷𝟎 ∗ −𝟏 

https://en.wikipedia.org/wiki/Logistic_distribution


Image borrowed from: https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-how-do-i-interpret-odds-ratios-in-logistic-regression/
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Effect Sizes for Binary Outcomes
• Odds Ratio (OR) → effect size for predictors of binary outcomes

• e.g., if 𝑥11 is binary 
and 𝑥2𝑖 is quantitative

➢ OR for unique effect of 𝑥1𝑖 = exp 𝛽1 =
𝑝 𝑦𝑖 = 1 𝑥1𝑖 = 1 /𝑝 𝑦𝑖 = 0 𝑥1𝑖 = 1
𝑝 𝑦𝑖 = 1 𝑥1𝑖 = 0 /𝑝 𝑦𝑖 = 0 𝑥1𝑖 = 0

 

➢ OR for unique effect of 𝑥2𝑖 = exp 𝛽2 : same principle, but 
denominator is some reference value (e.g., mean by default) 
and numerator is “one unit” higher (and “unit” can be defined)

➢ For each, you’ll have to decide at what value to hold other predictors 
to get the exact probabilities, but the odds ratio will only change if the 
predictors are part of an interaction (from marginal → conditional)

• OR is asymmetric: ranges from 0 to +∞; where 1 = no relationship

➢ e.g., if 𝜷𝟏 = 𝟏, then exp 𝛽1 = 2.72 → odds of 
𝑦𝑖 = 1 are 2.72 times higher per unit greater 𝑥1𝑖 

➢ e.g., if 𝜷𝟏 = −𝟏, then exp 𝛽1 = 0.37→ odds of 
𝑦𝑖 = 1 are 0.37 times higher per unit greater 𝑥1𝑖 
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𝐋𝐨𝐠
𝒑(𝒚𝒊=𝟏)

𝟏−𝒑(𝒚𝒊=𝟏)
= 𝜷𝟎 + 𝜷𝟏(𝒙𝟏𝒊) + 𝜷𝟐(𝒙𝟐𝒊)

O
d

d
s 

(0
-1

0
)

Probability (0-1)

https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-how-do-i-interpret-odds-ratios-in-logistic-regression/
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• The idea that a “latent” continuous variable underlies an observed 

binary response also appears in a “Probit Regression” model:

➢ A probit link, such that the linear model predicts a different transformed 𝒚𝒊: 

     Probit 𝑦𝑖 = 1 = Φ−1[𝑝 𝑦𝑖 = 1 ] = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 

▪ Φ = standard normal cumulative distribution function, so the link-transformed 𝒚𝒊 

is the z-value that corresponds to the location on standard normal curve below 

which the conditional mean probability is found (i.e., z-value for area to the left)

▪ Requires integration to inverse link from probits to predicted probabilities

➢ Same Bernoulli distribution for the conditional binary outcomes, in which 

residual variance cannot be separately estimated (so no 𝑒𝑖 in the model)

▪ Model scale: Probit can also predict “latent” response:   𝒚𝒊
∗ = −𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 + 𝒆𝒊 

▪ But Probit says 𝒆𝒊 ~ 𝑵𝒐𝒓𝒎𝒂𝒍 𝟎, 𝝈𝒆
𝟐 = 1.00 , whereas logit 𝝈𝒆

𝟐 = 
𝝅𝟐

𝟑
= 3.29

➢ So given this difference in variance, probit coefficients are on a different 

scale than logit coefficients, and so their estimates won’t match… however…

Other Link Functions for Binary Data

𝐠 ⋅  𝐥𝐢𝐧𝐤
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Probit vs. Logit:  Should you care? Pry not.

Left image: exact source now unknown, but I think it was from Don Hedeker

Right image: borrowed from Jonathan Templin
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• Other fun facts about probit:

➢ Probit = “ogive” in the Item Response Theory (IRT) world

➢ Probit has no odds ratios (because it’s not made from odds)

• Both logit and probit assume symmetry of the probability 
curve, but there are other asymmetric options as well…

Probit 𝝈𝒆
𝟐 = 1.00

(SD=1)

Logit 

𝛔𝐞
𝟐 = 3.29

(SD=1.8)

Rescale to equate 

linked outcomes: 

𝜷𝒍𝒐𝒈𝒊𝒕 =

𝜷𝒑𝒓𝒐𝒃𝒊𝒕 ∗

𝟏. 𝟕(. 𝟎𝟏)

You’d think it would 

be 1.8 to rescale, 

but it’s actually 1.7…

𝑦𝑖 = 0

Threshold

P
ro

b
a
b

il
it

y
 

𝑦𝑖 = 1

Link-Transformed 𝑦𝑖
∗ 

Link-Transformed 𝑦𝑖
∗ 

P
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b
a
b
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it

y
 



Other Link Functions for Binary Outcomes

-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0

0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91
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Original Probability

Logit Probit = Z*1.7

Log-Log Complementary Log-Log
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Model→ ෝ𝒚𝒊 Logit Probit Log-Log Complement. Log-Log

g(⋅) link Log
𝑝𝑖

1−𝑝𝑖
= ො𝑦𝑖

Φ−1 𝑝𝑖 = ො𝑦𝑖 −Log −Log 𝑝𝑖 = ො𝑦𝑖 Log −Log 1 − 𝑝𝑖 = ො𝑦𝑖

g−1(⋅) 

inverse link 

(go back to 

probability):

𝑝𝑖 =
𝑒𝑥𝑝 ො𝑦𝑖

1 + 𝑒𝑥𝑝 ො𝑦𝑖

𝑝𝑖 = Φ−1 ො𝑦𝑖 𝑝𝑖 = exp −exp − ො𝑦𝑖 𝑝𝑖 = 1 − exp −exp ො𝑦𝑖

𝑒𝑖~logWeibull "extreme value" 0.577, 𝜎𝑒
2 =

𝜋2

6

Logit = Probit*1.7

both of which assume 

symmetry of prediction

Log-Log is for outcomes in 

which 1 is more frequent

Complementary 

Log-Log is for outcomes in 

which 0 is more frequent



Too Logit to Quit* https://www.youtube.com/watch?v=HFCv86Olk8E 
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• The logit is the basis for many other generalized models for 
categorical (ordinal or nominal; IRT “polytomous”) outcomes

• Next we’ll see how 𝐶 possible response categories can be 
predicted using 𝐶 − 1 binary “submodels” whose link functions 
carve up the categories in different ways, in which each binary 
submodel (usually) uses a logit link to predict its outcome

• Types of categorical outcomes:

➢ Definitely ordered categories: “cumulative logit” → ordinal

➢ Maybe ordered categories: “adjacent category logit” (not used much)

➢ Definitely NOT ordered categories: “generalized logit” → nominal 
(or “baseline category logit” or “multinomial regression”

* Starts about 8 minutes into 15-minute video (and MY joke for the last 10+ years!)

https://www.youtube.com/watch?v=HFCv86Olk8E
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Logit Models for 𝐶 Ordinal Categories
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• Known as “cumulative logit” or “proportional odds” model in 

generalized models; known as “graded response model” in IRT

• Models the probability of lower vs. higher cumulative categories via 

𝐶 − 1 submodels (e.g., if 𝐶 = 4 possible responses of 𝑐 = 0,1,2,3): 

           0 vs. 1,2,3       0,1 vs. 2,3         0,1,2 vs. 3

• In software what the binary submodels predict depends on whether the 

model is predicting DOWN (𝒚𝒊 = 𝟎) or UP (𝒚𝒊 = 𝟏) cumulatively 

➢ Red = threshold, blue = intercept!

• Example predicting UP in an empty model (subscripts=parm, submodel)

• Submodel 1:  𝐿𝑜𝑔𝑖𝑡[𝑝(𝑦𝑖 > 0)] = 𝛽01  → 𝑝 𝑦𝑖 > 0 = 𝑒𝑥𝑝 𝛽01 / 1 + 𝑒𝑥𝑝 𝛽01

• Submodel 2:  𝐿𝑜𝑔𝑖𝑡[𝑝(𝑦𝑖 > 1)] = 𝛽02  → 𝑝 𝑦𝑖 > 1 = 𝑒𝑥𝑝 𝛽02 / 1 + 𝑒𝑥𝑝 𝛽02

• Submodel 3:  𝐿𝑜𝑔𝑖𝑡[𝑝(𝑦𝑖 > 2)] = 𝛽03 → 𝑝 𝑦𝑖 > 2 = 𝑒𝑥𝑝 𝛽03 / 1 + 𝑒𝑥𝑝 𝛽03

Submodel3Submodel2Submodel1

I’ve named these submodels 

based on what they predict, 

but each program output will 

name them in their own way…
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• Models the probability of lower vs. higher cumulative categories via

𝐶 − 1 submodels (e.g., if 𝐶 = 4 possible responses of 𝑐 = 0,1,2,3): 

 0 vs. 1,2,3       0,1 vs. 2,3         0,1,2 vs. 3

• In software, what the binary submodels predict depends on whether the 

model is predicting DOWN (𝒚𝒊 = 𝟎) or UP (𝒚𝒊 = 𝟏) cumulatively 

➢ Start with an empty model to verify which way your program is predicting!

➢ Either way, the model predicts the middle category responses indirectly

• Example if predicting UP with an empty model:

➢ Probability of 0 =       1 – Prob1   

Probability of 1 = Prob1– Prob2

Probability of 2 = Prob2– Prob3

Probability of 3 = Prob3– 0

Submodel3 

→ Prob3

Submodel2 

→ Prob2

Submodel1
→ Prob1

The cumulative submodels that create these 

probabilities are each estimated using all the 

data (good, especially for categories not chosen 

often), but assume order in doing so (may be 

bad or ok, depending on your response format)

Logit[𝑝(𝑦𝑖 > 2)] = 𝛽03    

→ 𝑝 𝑦𝑖 > 2 =
𝑒𝑥𝑝 𝛽03

1+𝑒𝑥𝑝 𝛽03
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Logit Models for 𝐶 Ordinal Categories
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• Btw, ordinal models usually use a logit link transformation, but they can 
also use cumulative log-log or cumulative complementary log-log links

• Assume proportional odds: that SLOPES of predictors ARE THE SAME
across binary submodels—for example (subscripts = parm, submodel)

➢ Submodel 1:  𝐿𝑜𝑔𝑖𝑡[𝑝(𝑦𝑖 > 0)] = 𝜷𝟎𝟏 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥1𝑖𝑥2𝑖

➢ Submodel 2:  𝐿𝑜𝑔𝑖𝑡[𝑝(𝑦𝑖 > 1)] = 𝜷𝟎𝟐 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥1𝑖𝑥2𝑖

➢ Submodel 3:  𝐿𝑜𝑔𝑖𝑡[𝑝(𝑦𝑖 > 2)] = 𝜷𝟎𝟑 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥1𝑖𝑥2𝑖

• Proportional odds essentially means no interaction between submodel and 
predictor slope, which greatly reduces the number of estimated parameters

➢ Can be tested and changed to “partial” proportional odds in SAS LOGISTIC, 
STATA GOLOGIT2, and R VGLM (but harder to find in mixed-effects models)

▪ In STATA gllamm (user-created routine); in SAS PROC NLMIXED; in R ???

➢ If the proportional odds assumption fails, it may be more understandable 
to use a nominal model instead (see next slide; dummy-coding to create 
separate binary outcomes could also approximate a nominal model)
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• Uses multinomial distribution: e.g., PDF for 𝐶 = 4 categories of 

𝑐 = 0,1,2,3; an observed 𝑦𝑖 = 𝑐; and indicators 𝐼 if 𝑐 = 𝑦𝑖

     𝑓 𝑦𝑖 = 𝑐 = 𝑝𝑖0
𝐼[𝑦𝑖=0]

𝑝𝑖1
𝐼[𝑦𝑖=1]

𝑝𝑖2
𝐼[𝑦𝑖=2]

𝑝𝑖3
𝐼[𝑦𝑖=3]

➢ Maximum likelihood estimation finds the most likely parameters 

for the model to predict the probability of each response through the 

(usually logit or probit) link function; probabilities sum to 1: σ𝑐=1
𝐶 𝑝𝑖𝑐 = 1

• Other models for categorical data that use a multinomial PDF:

➢ Adjacent category logit (IRT “partial credit”): Models probability of 

each next highest category via 𝐶 − 1 submodels (e.g., if 𝐶 = 4): 

 0 vs. 1  1 vs. 2  2 vs. 3

➢ Baseline category logit (nominal or “multinomial”): Models probability of 

reference vs. each other 𝒄 via 𝐶 − 1 submodels  (e.g., if 𝐶 = 4 and 0 = ref): 

 0 vs. 1  0 vs. 2  0 vs. 3

▪ Nominal also assumes “independence of irrelevant alternatives”—that the same fixed 

effects would be found if the possible choices were not the same (empirically testable)

Only 𝑝𝑖𝑐 for response 

𝑦𝑖 = 𝑐 gets used

ALL parameters are estimated 
separately per nominal submodel



Generalized MLM: Intermediate Summary
• Statistical models use probability distributions

➢ Outcomes are assumed to have some conditional distribution

➢ The normal distribution is one choice, but there are many others: 
so far we’ve seen Bernoulli and multinomial

➢ ML estimation tries to maximize the height of the data using that 
chosen distribution along with the model parameters

• Generalized linear models have three parts:

1. Non-normal conditional outcome distribution

2. Link function: how bounded conditional mean of 𝑦𝑖 gets 
transformed into something unbounded we can predict linearly

▪ So far we’ve seen identity, logit, probit, log-log, and cumulative log-log

3. Linear predictor: how we predict that linked conditional mean 
using fixed (and random) effects
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From Single-Level to Multilevel…
• Multilevel generalized models have the same 3 parts as 

single-level generalized models:

➢ Alternative conditional distribution for the outcome (e.g., Bernoulli)

➢ Link function to transform bounded conditional mean into unbounded

➢ Linear model that directly predicts the linked conditional mean instead

• But in adding random effects (i.e., additional piles of variance) 
to address dependency in multilevel data:

➢ Piles of variance will appear to be ADDED TO, not EXTRACTED FROM, 
the original residual variance when fixed (e.g., 3.29=logit, 1.0=probit), 
which causes all coefficients to change scale across models

➢ ML estimation is way more difficult because normal random effects + 
not-normal residuals does not have a known distribution like MVN

➢ No such thing as REML for generalized multilevel models with true ML

➢ Pseudo-R2 is not possible for level-1 effects (so use odds ratios instead)
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Empty Multilevel Model for Binary Outcomes

• Level 1:   𝑳𝒐𝒈𝒊𝒕 [𝒑(𝒚𝒑𝒄 = 𝟏)] = 𝜷𝟎𝒄 

• Level 2:            𝜷𝟎𝒄 = 𝜸𝟎𝟎 + 𝑼𝟎𝒄

• Composite: 𝑳𝒐𝒈𝒊𝒕 [𝒑(𝒚𝒑𝒄 = 𝟏)]  = 𝜸𝟎𝟎 + 𝑼𝟎𝒄

• 𝝈𝒆
𝟐 residual variance is not estimated → π2/3 = 3.29 in logits

• Logit ICC =
BC

BC+WC
=

𝝉𝑼
𝟐

𝟎

𝝉𝑼
𝟐

𝟎
+𝝈𝒆

𝟐 =
𝝉𝑼

𝟐
𝟎

𝝉𝑼
𝟐

𝟎
+ 𝟑.𝟐𝟗

• Can do LRT to see if logit 𝝉𝑼
𝟐

𝟎
> 0; the ICC is problematic to interpret on the 

data scale due to non-constant and not estimated residual variance

• ICC formulas for other outcomes besides binary vary widely

• Probit link replaces residual variance with 1; others use a function of the mean when the 

variance is mean-dependent (e.g., Poisson) – see this article in your reading list for details

Notice what’s 

NOT in level 1…
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Example Random Slope Model for Binary 

Outcomes using Cluster-MC 𝑾𝑪𝒙𝒑𝒄

• Level 1:  𝑳𝒐𝒈𝒊𝒕 𝒑 𝒚𝒑𝒄 = 𝟏 = 𝜷𝟎𝒄 + 𝜷𝟏𝒄(𝑾𝑪𝒙𝒑𝒄)

• Level 2:      𝜷𝟎𝒄 = 𝜸𝟎𝟎 + 𝜸𝟎𝟏 𝑪𝑴𝒙𝒄 + 𝑼𝟎𝒄

                                    𝜷𝟏𝒄 = 𝜸𝟏𝟎 + 𝜸𝟏𝟏 𝑪𝑴𝒙𝒄 + 𝑼𝟏𝒄

• 𝜸𝟎𝟏 main effect of 𝑪𝑴𝒙𝒄 will reduce level-2 random intercept 
variance 𝝉𝑼𝟎

𝟐 ; 𝜸𝟏𝟏 cross-level interaction of 𝑪𝑴𝒙𝒄* 𝑾𝑪𝒙𝒑𝒄 will 

reduce level-2 random slope variance 𝝉𝑼𝟏

𝟐 for 𝑾𝑪𝒙𝒑𝒄

• 𝝈𝒆
𝟐 residual variance is still not estimated → π2/3 = 3.29, which 

means we cannot use it to make a pseudo-R2 for 𝑾𝑪𝒙𝒑𝒄 (even 

though that is still what its fixed slope is trying to reduce)

• Can test new fixed OR random effects with LRTs (−2ΔLL) when 
using true ML estimation (or use univariate or multivariate Wald 
test p-values for fixed effects, but usually without denominator DF)
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Example Random Slope Model for an 
Ordinal Outcome (𝑦𝑝𝑐 = 0, 1, or 2)

• 𝑳𝟏:  𝑳𝒐𝒈𝒊𝒕 𝒑 𝒚𝒑𝒄 > 𝟎 = 𝜷𝟎𝒄𝟏 +  𝜷𝟏𝒄𝟏 
(𝑾𝑪𝒙𝒑𝒄)

        𝑳𝒐𝒈𝒊𝒕 [𝒑(𝒚𝒑𝒄 > 𝟏)] =  𝜷𝟎𝒄𝟐 +  𝜷𝟏𝒄𝟐(𝑾𝑪𝒙𝒑𝒄)

• L2:    𝜷𝟎𝒄𝟏 = 𝜸𝟎𝟎𝟏 + 𝑼𝟎𝒄𝟏 
𝜷𝟏𝒄𝟏 = 𝜸𝟏𝟎𝟏 + 𝑼𝟏𝒄𝟏

              𝜷𝟎𝒄𝟐 = 𝜸𝟎𝟎𝟐 + 𝑼𝟎𝒄𝟐 𝜷𝟏𝒄𝟐 = 𝜸𝟏𝟎𝟐 + 𝑼𝟏𝒄𝟐

• Cumulative logit link defaults to proportional odds → 
𝜸𝟎𝟎𝟏 ≠ 𝜸𝟎𝟎𝟐 but 𝜸𝟏𝟎𝟏 = 𝜸𝟏𝟎𝟐 and 𝑼𝟎𝒄𝟏 = 𝑼𝟎𝒄𝟐 and 𝑼𝟏𝒄𝟏 = 𝑼𝟏𝒄𝟐 

➢ Testable directly using a “partial” proportional odds model in which 
some can be constrained or indirectly via nominal model (all unequal)

➢ 𝝈𝒆
𝟐 residual variance is still not estimated → π2/3 = 3.29 (if link=logit)

• Btw, for nominal models (baseline category link), all 
parameters are separate across submodels by default

➢ For more on ordinal and nominal MLMs, see Don Hedeker’s slides
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Last subscript of 

1 or 2 is for 

which submodel

https://ssicentral.com/wp-content/uploads/2015/09/Ordinal_Nominal_Long.pdf


New Interpretation of Fixed Effects
• In general MLMS, the fixed effects are interpreted as the 

“average” effect for the sample, such as in an empty model:

➢ e.g., fixed intercept γ00 is “mean of cluster means”

➢ e.g., random intercept U0c is “cluster 𝑐 deviation from sample mean”

• What “average” means in generalized MLMs is different, 

because of the use of nonlinear link functions:

➢ e.g., mean of log-transformed(𝑦) ≠ log-transformed mean(𝑦) 

➢ Therefore, the fixed effects are not the “sample average” effect, 

they are the effect for specifically for corresponding Uc = 0 

▪ So fixed effects are conditional on the random effects

▪ This is called a “unit-specific” or “subject-specific” model

▪ This distinction does not exist when using a normal conditional distribution
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Comparing Results across Models is Tricky!

• Level-1 fixed effects cannot be compared directly across 

models, because they are not on the same scale! (Bauer, 2009)

• e.g., if residual variance = 3.29 in logit models:

➢ When adding a random intercept variance to an empty model, the 

total variation in the outcome has increased → the fixed effects 

will increase in size because they are unstandardized slopes

➢ Level-1 predictors cannot decrease the level-1 residual variance 

like usual, so all other model estimates must increase to compensate

▪ If 𝑥𝑝𝑐 is uncorrelated with other predictors and is a pure level-1 variable 

(ICC ≈ 0), then fixed and 𝑆𝐷(𝑈0𝑐) will increase by same factor

➢ Random effects variances can decrease, so level-2 fixed effects should 

be on the same scale across models given the same level-1 model

0

2

U

mixed fixed

+3.29
γ  ( )

3.29
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A Little Bit about Estimation
• Goal: End up with maximum likelihood estimates for all model 

parameters (because they are consistent and most efficient)

➢ Given a conditional normal distribution (i.e., V matrix based on 

MVN 𝒆𝒑𝒄 level-1 residuals and MVN 𝑼𝒄 level-2 random effects), 

ML estimation is relatively easy because we don’t need to know 

the 𝑼𝒄 values: the marginal log-likelihood does not include them

➢ Given a non-normal conditional distribution (i.e., binary outcomes 

are Bernoulli after conditioning on the MVN 𝑼𝒄 level-2 random effects), 

ML estimation is much harder because we do need the 𝑼𝒄 values in 

creating linear predictor outcomes and a log-likelihood per cluster

• 3 main families of estimation approaches:

➢ Quasi-Likelihood methods (“marginal/penalized quasi ML”)

➢ Numerical Integration (“adaptive Gaussian quadrature”)

➢ Also Bayesian methods (MCMC, increasingly available)
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Quasi-Likelihood Estimation
• Older methods, also known as “pseudo-likelihood”

➢ Predict link-transformed conditional mean using a general MLM    

➢ “Marginal QL” → linear approximation using fixed part of model

➢ “Penalized QL” → linear approximation using fixed + random

➢ Come in ML and REML variants (MSPL and RSPL in SAS GLIMMIX)

➢ Are the DEFAULT in SAS GLIMMIX and only option in SPSS!

• Why not use them?

➢ Provide too small random effects variances (2nd-order PQL is 

supposed to be better than 1st-order MQL in this regard)

➢ THEY DO NOT PERMIT MODEL −2ΔLL TESTS

▪ Modern software may also add a Laplace approximation to QL, which 

then does permit −2ΔLL tests (also in SAS GLIMMIX and STATA melogit)
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Marginal Maximum Likelihood Estimation

• ML via Numeric(al) Integration → gold standard of ML

➢ Synonyms: (adaptive) Gaussian quadrature

➢ Provides much better estimates and valid −2ΔLL tests (ML flavor only) 

➢ Can take forever or not converge at all in models with many random 

effects; not available for models with crossed random effects

▪ “Laplace” approximation can be used, which is equivalent to 1 integration point (???)

➢ Start values can help speed estimation (i.e., from QL methods)

➢ Relies on assumptions of local independence, like usual → all level-1 

dependency has been modeled; level-2 units are independent

➢ No such thing as an R matrix correlation pattern (only relevant for 

longitudinal data), so any differences in variance or additional 

sources of covariance must be specified via random effects in G

▪ Using _RESIDUAL_ option in SAS GLIMMIX RANDOM statements triggers QL

▪ Also no V matrix, so it can be hard to discern the predicted variance pattern
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ML via Numeric(al) Integration
• Step 1: Select starting values for all fixed effects

• Step 2: Compute the likelihood of each observation given by the 

current parameter values using chosen distribution of residuals

➢ Model creates link-predicted outcome given parameter estimates, but the 

𝑼𝒄 values are not parameters—their variances and covariances are instead

➢ But so long as we can assume the 𝑼𝒄 values are MVN, we can still proceed…

➢ Computing the likelihood for each set of possible parameters requires removing 

the contribution of the individual 𝑼𝒄 values from the model equation—by 

integrating across possible 𝑼𝒄 values for each level-2 unit

➢ Integration is accomplished by “Gaussian Quadrature” → summing up rectangles 

that approximate the integral (area under the curve) for each level-2 unit

• Step 3: Decide if it has the “right” answers, which occurs when the 

log-likelihood changes very little across iterations (i.e., it converges)

• Step 4: If it hasn’t converged, choose new parameters values

➢ Newton-Rhapson or Fisher Scoring (calculus), EM algorithm (U’s =missing data)
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ML via Numeric(al) Integration

• More on Step 2: Divide the 𝑼𝒄 distribution into rectangles

➢    → “Gaussian Quadrature” (# rectangles = # “quadrature points”)

➢ First divide the whole 𝑼𝒄 distribution into rectangles, then repeat by 

taking the most likely section for each level-2 unit and rectangling that

▪ This is “adaptive quadrature” and is computationally more demanding, but 

gives more accurate results with fewer rectangles (defaults differ by program)

The likelihood of each level-2 unit’s 

outcomes at each 𝑼𝒄 rectangle is then 

weighted by that rectangle’s 

probability of being observed (from 

the multivariate normal distribution). 

The weighted likelihoods are then 

summed across all rectangles… 

       → ta da! “numerical integration”
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Example of Numeric Integration: 
Binary DV, Fixed 𝒙𝒑𝒄 Slope, Random Intercept
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1. Start with values for fixed effects: intercept: 𝜸𝟎𝟎 = 𝟎. 𝟓, 𝒙𝒑𝒄: 𝜸𝟏𝟎 = 𝟏. 𝟓, 

2. Compute likelihood for real data based on fixed effects and plausible 

𝑈0𝑐 = (−2,0,2) using model: 𝑳𝒐𝒈𝒊𝒕(𝒚𝒑𝒈 = 𝟏) = 𝜸𝟎𝟎 + 𝜸𝟏𝟎(𝒙𝒑𝒄) + 𝑼𝟎𝒄 

• Here for one cluster of two persons with 𝒚𝒑𝒄 = 𝟏 for both persons

IF y=1 IF y=0 Likelihood U0 U0 Product

U0 = -2 Logit Prob 1-Prob if both y=1 prob width per U0

x=0 (0.5+0-2) -1.5 0.18 0.82 0.091213 0.05 2 0.00912

x=1 (0.5+1.5-2) 0.0 0.50 0.50

U0 = 0 Logit Prob 1-Prob

x=0 (0.5+0-0) 0.5 0.62 0.38 0.54826 0.40 2 0.43861

x=1 (0.5+1.5-0) 2.0 0.88 0.12

U0 = +2 Logit Prob 1-Prob

x=0 (0.5+0+2) 2.5 0.92 0.08 0.90752 0.05 2 0.09075

x=1 (0.5+1.5+2) 4.0 0.98 0.02

Overall Likelihood (Sum of Products over All U0 Values): 0.53848

(do this for each person, then multiply this whole thing over all clusters)

(repeat with new values of fixed effects until find highest overall likelihood)



Summary: Complications of 

Generalized Multilevel Models
• Analyze link-transformed conditional mean (e.g., via logit, probits…)

➢ Linear relationship: predictors → link-transformed conditional mean outcome

➢ Nonlinear relationship: predictors → data-scale conditional mean outcome

▪ Conditional outcomes (after fixed+random effects) then follow a non-normal distribution

• In models for binary or categorical outcomes, level-1 residual variance is 
fixed and varies with the conditional mean (gets smaller → boundaries)

➢ So it can’t go decrease after being explained by level-1 predictors, which 
means that the scale of all model parameters must go UP to compensate

➢ Scale of model will also be different after adding random effects for 
the same reason—the total variation in the model is now bigger

➢ Fixed effects may not be comparable across models as a result

• Estimation is trickier, takes longer, and true ML does not come in REML flavor

➢ Numerical integration is best but may blow up in complex models

➢ Start values are often essential (can get those with pseudo-likelihood estimators)
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A Taxonomy of Not-Normal Outcomes

43    

• “Discrete” outcomes—all responses are whole numbers

➢ Categorical variables in which values are labels, not numbers

▪ Bernoulli (2 options) or multinomial (3+ options) distributions

▪ Question: Are the values ordered → Which link function? 

➢ Count of things that happened, so values < 0 cannot exist

▪ Outcome values range from 0 to +∞ (whole numbers only)

▪ Usually some kind of Poisson or Negative Binomial distribution

▪ Usually log link so predicted outcomes can’t go below 0

▪ Questions: Which conditional distribution? Are there extra 0 values? 

• “Continuous” outcomes—responses can be any number

➢ Question: What does the conditional distribution look like?

▪ Symmetric or skewed? Are there boundaries? 



There’s (Pry) a Model for That!
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• Many kinds of non-normal outcomes can be analyzed with 

generalized MLMs through the magic of ML (or Bayes)

➢ Can be fewer choices in MLM than for single-level models 

(as in next slides from PSQF 6270 Generalized Linear Models)

• Two parts: Link function + other conditional distribution

➢ Binary → Logit + Bernoulli

➢ Ordinal or Nominal → Logit + Multinomial

➢ Proportion → Logit + Binomial/Beta-Binomial 

➢ Count → Log + Poisson/Negative Binomial

➢ Censored → Tobit + Normal/Bernoulli 

➢ Skewed Continuous → Log + Log-Normal/Gamma

➢ Bimodal Continuous → Logit + Beta

➢ Zero-Inflated (if and how much) → Logit/Log + Bernoulli/other

https://www.lesahoffman.com/PSQF6270/index.html
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Too Logit to Quit: Predicting Proportions
• Logit-type links can be useful in predicting proportions:

➢ Range between 0 and 1, so model needs to “shut off” predictions for 
conditional mean as they approach those ends, just as in binary data

▪ We are predicting the logit of 𝒑𝒊, the probability of 𝒚𝒊 = 𝟏 for any trial, 
when multiplied by the # trials, it becomes predicted # of 1 values = 𝝁𝒊

➢ Any outcome can be transformed to range between 0 and 1 
to be modeled this way: Proportion = (𝑦𝑖 − min)/(max − min)

➢ Data to model: →  predict ො𝑦𝑖 in logits = Log
𝑝𝑖

1−𝑝𝑖

➢ Model back to data → 𝑝𝑖 =
𝑒𝑥𝑝 ො𝑦𝑖

1+𝑒𝑥𝑝 ො𝑦𝑖

• Odds ratios can be used as effect size: OR = exp(slope)

• Distributions? Binomial (discrete), Beta (continuous), or hybrid

➢ Binomial: Less flexible (just one hump), but can include 0 and 1 values

➢ Beta: Way more flexible (but ????), but cannot directly include 0 or 1 values

➢ Beta-binomial: Flexible hybrid well-suited for multiplicative overdispersion 
(see also “observation-level random effects” for additive overdispersion)
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𝐠(⋅) Link

𝐠−𝟏 ⋅  Inverse-Link
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Natural Log Link for Count Outcomes
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This is an unbounded linear 

model that predicts the Log 

of the Expected Count…

𝐿𝑜𝑔 𝐸 𝑦𝑖 = 𝜷𝟎 + 𝜷𝟏(𝒙𝒊)

…that becomes an expected 

count bounded at 0 via an 

inverse link of exp(log count):

𝐸 𝑦𝑖 = 𝒆𝒙𝒑 𝜷𝟎 + 𝜷𝟏(𝒙𝒊)
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Models for Count Outcomes
• Counts: non-negative integer responses (unbounded positive)

➢ Link: g ⦁  𝐿𝑜𝑔 𝐸 𝑦𝑖 = 𝐿𝑜𝑔 𝜇𝑖 = [model] → predicts log of count as ො𝑦𝑖

➢ Inverse Link: g−1 ⦁  𝐸(𝑦𝑖) = exp( ො𝑦𝑖)→ to un-log ො𝑦𝑖 back to expected count

➢ e.g., if the model-scale predicted log count: 𝐿𝑜𝑔( Ƹ𝜇𝑖) = ො𝑦𝑖 = −1, 
        the data-scale expected count is: Ƹ𝜇𝑖 = 𝑒𝑥𝑝 −1 = 0.368

▪ So even though counts are only integers, expected counts are not!

➢ Btw, you can control for differences in time measured via an offset (or 
exposure) log-transformed predictor variable whose slope is fixed =1

• 𝐞𝐱𝐩(𝜷𝒙) gives an effect size called an “incidence-rate ratio” (IRR) 
that is on same scale as an odds ratio (IRR = 1 means no effect)

➢ e.g., IRR = 1.25 for 𝑥𝑖 = 0 or 1? 𝑥𝑖 = 1 counts are “25% higher”

➢ e.g., IRR = 0.75 for 𝑥𝑖 = 0 or 1? 𝑥𝑖 = 1 counts are “25% lower”

➢ Stata also gives McFadden’s pseudo-R2 = 1 − (𝐿𝐿𝑚𝑜𝑑𝑒𝑙/𝐿𝐿𝑒𝑚𝑝𝑡𝑦)

• Choosing the “right” conditional distribution is the tricky part!

➢ Poisson and Negative Binomial are most common variants
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Image borrowed from: https://en.wikipedia.org/wiki/Poisson_distribution
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Poisson Conditional Distribution
• Poisson distribution has one parameter, 𝛌, which is both its 

mean and its variance (so 𝜆 = mean 𝜇 = variance in Poisson)

• PDF: 𝑓 𝑦𝑖 = 𝑃𝑟𝑜𝑏 𝑦𝑖 = 𝑦 =
𝑒𝑥𝑝 −𝜇 ∗𝜇𝑦

𝑦!

𝑦! = factorial of 𝑦 = 

gamma function 𝛤 𝑦 + 1

The dots indicate that only 

integer values are observed.

Distributions with a small 

expected value (mean 𝜆) are 

predicted to have a lot of 0’s.

Once 𝜆 > 6 or so, the shape of 

the distribution is close to a 

that of a normal distribution.

𝑦 
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https://en.wikipedia.org/wiki/Poisson_distribution


When Variance > Mean = Over-dispersion
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• To fix it, we must add a parameter that allows the variance to exceed 
the mean… it is then a Negative Binomial (Negbin) distribution

➢ Two types of extra variance: constant = NB-1, quadratic = NB-2 (better)

• NB-2 has mean 𝝁 and dispersion = “scale” 𝒌 (or 1/𝑘 = 𝜃 instead):

➢ PDF: 𝑃𝑟𝑜𝑏 𝑦𝑖 = 𝑦 =
𝛤 𝑦+

1

𝑘

𝛤 𝑦+1 ∗𝛤
1

𝑘

∗
1

1+𝑘𝜇

1

𝑘
∗ 1 −

1

1+𝑘𝜇

𝑦

➢ 𝒌 is a multiplier: 𝑉𝑎𝑟 𝑦𝑖 = 𝜇 + 𝒌𝜇2 (so Negbin ≈ Poisson if 𝑘 = 0)

➢ Can test if 𝑘 > 0 via LRT (−2ΔLL), although LL for 𝑘 = 0 is undefined

➢ In SAS GLIMMIX DIST = NEGBIN (as 𝑘 = “scale”); STATA NBREG or GLM 

(as 𝑘 = “alpha”); R VGAM, MASS (as 𝜃), or PSCL (as 𝜃); more about R here

• An alternative model with the same idea is generalized Poisson:

➢ Mean: 
𝜇

1−𝑘
, Variance: 

1

1−𝑘 3, so LL is actually defined for 𝑘 = 0

➢ Much less commonly used, though

https://www.statistik.uni-dortmund.de/useR-2008/slides/Kleiber+Zeileis.pdf


Negative Binomial (NB) = “Stretchy” Poisson…
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• Because its 𝑘 dispersion parameter is fixed to 0, the Poisson model is 
nested within the Negative Binomial model—to test improvement in fit:

• Is −2 𝐿𝐿𝑃𝑜𝑖𝑠𝑠𝑜𝑛 − 𝐿𝐿𝑁𝑒𝑔𝐵𝑖𝑛 > 3.84 for 𝐷𝐹 = 1? Then if 𝑝 <  .05, keep NB

• If using a mixture of 𝐷𝐹 = 0 and 𝐷𝐹 = 1, use −2∆𝐿𝐿 > 2.71 instead

Mean = 𝜇
Dispersion = k

𝑉𝑎𝑟 𝑦𝑖 = 𝜇 + 𝑘𝜇2

A Negative Binomial 

model can be useful 

for count outcomes 

with extra skewness.
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More on Generalized MLM: Summary
• There are many options for “amount” variables whose residuals may 

not be normally distributed

➢ Discrete Counts: Poisson, Negative Binomial

➢ Continuous Amounts: Lognormal, Gamma, Beta

➢ Too many 0’s: Zero-inflated or hurdle for discrete; two-part for continuous

• Multilevel versions of most generalized models can be estimated…

➢ But it’s harder to do and takes longer due to numeric integration 

(trying on all combinations of random effects at each iteration) 

➢ But there are fewer ready-made options for modeling differential 

variance/covariance across DVs (no R matrix structures in true ML)

• Program documentation will always be your friend to determine 

exactly what a given model is doing!
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