
General MLMs for Two-Level 

Cross-Classified Data
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• Topics:

➢ Cross-sectional cross-classification (time-invariant groups)

➢ Longitudinal cross-classification (time-varying groups)

➢ Random slopes and smushing in cross-classified models



More Complex Multilevel Designs
• Multilevel models are specified based on the relevant dimensions by 

which observations differ each other, and how the units are organized

• Two-level models have at least two piles of variance, 
in which level-1 units are nested within level-2 units:

➢ Longitudinal data: Occasions nested within Persons

➢ Clustered data: Students nested within Teachers

• Three-level models have at least three piles of variance, in which 
level-2 units are nested within level-3 units (stay tuned):

➢ Longitudinal data: Occasions nested within Persons within Families

➢ Clustered data: Students nested within Teachers within Schools

• In other designs, multiple sources of systematic variation 
may be present, but the sampling may be crossed instead… 

➢ Models with crossed random effects are known as “cross-classified” (if 1 for each)
or “multiple membership” (if weights sum to 1) models in clustered data

➢ Here is a more extended treatment by Don Hedeker than what I have time to do

➢ Here are a few examples on when this might happen…
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Kids, Schools, and Neighborhoods
• Kids are nested within schools AND within neighborhoods

• Not all kids from same neighborhood live in same school, 

so schools and neighborhoods are crossed dimensions at level 2

• Can include predictors for each source of variation
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Specifying Cross-Classified Models
• If there is only one L1 observation per combination of L2 

crossed units, then their interaction = residual variance

➢ e.g., Only one trial per combination of subject and item? Then: 

➢ L2 subject random intercept = subject mean differences

➢ L2 item random intercept = item mean differences

➢ L1 residual = subject by item interaction

• If there is more than one L1 observation per combo of L2 
crossed units, their interaction can have a L2 random intercept

➢ e.g., 2+ kids from same school and neighborhood? Then:

➢ L2 school random intercept = school mean differences

➢ L2 neighborhood random intercept = neighborhood mean differences

➢ L2 school by neighborhood random intercept = school by 
neighborhood interaction (creates extra correlation within crossing) 

➢ L1 residual variance = kid-to-kid diffs within same crossing
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Specifying Cross-Classified Models
• L1 predictors can have random slopes of over both types 

of L2 units, AND L2 predictors can have random slopes 

across the other crossed L2 dimension(s)

➢ Example: L1 kids within L2 schools by L2 neighborhoods

▪ L1 kid slopes could vary over L2 schools AND/OR L2 neighborhoods

▪ L2 school slopes could vary over L2 neighborhoods (crossed at L2)

▪ L2 neighborhood slopes could vary over L2 schools (crossed at L2)

• Prevent smushing of L1 slopes over *all* sets of L2 units!

➢ Separate contextual effects of kid predictors for all L2 dimensions 

▪ e.g., After controlling for kid IQ, the mean kid IQ for your school AND 

the mean kid IQ in your neighborhood (and the mean kid IQ for the 

school*neighborhood combination) may matter incrementally

▪ Use cluster-mean-centering to remove each source of L2 mean differences
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What about Time-Varying Clusters?
• e.g., Students are nested within classes at each occasion…

• But if students move into different classes over time… 

➢ Level-1 occasions are nested within level-2 students AND within 
level-2 classes: Students are crossed with classes at level 2

• How to model a time-varying classroom effect?

➢ Btw, this is the basis of so-called “value-added models”

➢ Btw, the extent of same-cluster dependency could vary over time, too

• Two example options (both via fixed or random effects):

➢ “Acute” effect: Class effect active only when students are in that class

▪ e.g., class effect  teacher bias

▪ Once a student is out of the class, class effect is no longer present

➢ “Transfer” effect: Effect is active when in class AND in the future…

▪ e.g., class effect  differential learning

▪ Effect stays with the student in the future (i.e., a “layered” value-added model)
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101 1 3 0 1 −99 43 1 0 0 1 0 0 

101 −99 4 1 1 −99 43 0 0 0 0 0 0 

101 43 5 2 1 −99 43 0 0 1 1 0 1 

102 3 3 0 3 21 42 1 0 0 1 0 0 

102 21 4 1 3 21 42 0 1 0 1 1 0 

102 42 5 2 3 21 42 0 0 1 1 1 1 

                          

 

Time (t), Students (s), and Classes (c)

• Custom-built intercepts for time-varying effects of classes

➢ An intercept is usually a column of 1’s, but ours will be 0’s 

and 1’s to serve as switches that turn on/off class effects
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Time (t), Students (s), and Classes (c)
• Hoffman (2015) Eq. 11.3: fixed effects model at time 𝑡 for student 𝑠 in 

classroom 𝑐, for classroom as a categorical time-varying predictor:

➢ Allows for control of classroom differences only….

• Hoffman (2015) Eq 11.4: classrooms as year-specific random effects

 crossed with students (as a random effect) at level 2:

➢ Controls for and quantifies classroom variances so they can be predicted!
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Cross-Classified Models in Software
• Some MLM software easily allows multiple sources of crossed 

random effects (e.g., SPSS MIXED, SAS MIXED, R lmer)

• Other MLM software must be tricked into it via 3-level models 

with equality constraints (implemented in STATA MIXED)

➢ Create 0/1 indicator variables for ID in smaller crossed dimension

➢ Create a constant = 1 to use as level-3 ID variable; give it a random 

effect for each ID indicator, with equal variances and 0 covariances

➢ STATA mixed uses this for the smaller crossed dimension: _all: R.ID

➢ I finally figured out how to add random slopes in cross-classified models 

in STATA—see Example 5 (thank you, Don Hedeker, again!)

➢ Appears to not allow random slopes for the tricked dimension, though

• Btw, Mplus will estimate cross-classified models using Bayes
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