Introduction to this Course: Multilevel Models (MLMs) for Clustered Data

- Topics:
 - > What to expect this semester
 - > Features of clustered data
 - Features of clustered models
 - > What can MLM do for you?
 - > What to expect in this course

What To Expect This Semester

 I believe that everyone is capable and can significantly benefit** from learning more types of quantitative methods (*especially* multilevel models)!

- Philosophy: Focus on accessibility + mastery learning
 - > No anxiety-prone tasks (e.g., hand calculations, memorizing formulas)
 - > No need to resort to AI for help! That's the job of me and the TAs!
- **Materials:** Unit = lecture + example(s); 8 units planned
 - Lecture slides present concepts—the (wordy) what and the why
 - Example documents: reinforce the concepts and demonstrate the how using software—STATA or R (SAS also provided); Mplus too
 - > All available at the <u>course website</u> (hosted outside of ICON)
- ** **Benefits** include but are not limited to: Better research, more authorship opportunities, and actual money

What To Expect This Semester

• I will NOT:

- > Use infrequent high-stakes testing to assess your level of learning
- > Assume you know any models beyond the GLM to begin with!
 - But we will also use generalized models (for non-normal outcomes)
 - I try to make connections to other modeling frameworks (i.e., MLM≈M-SEM)
- I WILL:
 - Use formative assessments (FA) to help you figure out what you need to review (6 planned; 12 points for completing them at all)
 - Require online homework (HW) assignments that give you real-data practice (6 planned; 88 points for completing them accurately)
 - Complete demo "HW 0" for 2 points extra credit
 - All canned data except for HW5, for which you can choose another canned data activity OR to do individual analysis using your own data
 - > Link research designs, data, questions, and models explicitly
 - If we don't cover the exact combination you need in class, just ask meodds are good I have an example from elsewhere that I can send you!

About the Course Requirements

- Everything is take-home, open-note, and untimed
- Late* work will be accepted (-2 for HW; -1 for FA)
 - *Extensions granted if requested at least 2 weeks in advance
 - > HW due dates may be pushed later (to ensure approximately 1 week after covering the material before it's due), but never sooner
- Formative assessments: Big-picture questions to provide a structured review (will go over answers at the next class)
 - > Also likely to include case studies and correcting Al-generated text!
- Homework assignments: Practice doing data analysis
 - Based directly on examples given (no googling required)
 - You will (usually) have a unique dataset (with a common story)
 - Computation sections: Instant feedback, infinite attempts
 - Results (interpretation) sections: Delayed feedback, single attempt (but repetition of concepts and vocabulary across the semester)

Our Other Responsibilities

- My job (besides providing materials and assignments):
 - Answer questions via email, in individual meetings, or in group-based zoom office hours—you can each work on homework during office hours and get (near) immediate assistance (and then keep working)
- Your job (in descending order of timely importance):
 - > **Ask questions**—preferably in class, but any time is better than none
 - Frequently review the class material, focusing on mastering the vocabulary (words and symbols), logic, and procedural skills
 - Don't wait until the last minute to start homework, and don't be afraid to **ask for help if you get stuck** on one thing for more than 15 minutes
 - Please email me a screenshot of your code+error so I can respond easily
 - Do the readings for a broader perspective and additional examples (best after lecture; readings are for the whole unit, not just that day)
 - Practice using the software to implement the techniques you are learning on data you care about—this will help you so much more!

More About Your Experience in this Class

- Attendance: Strongly recommended but not required
 - > You choose (for any reason): In-person or zoom
 - > **Masks** are still welcome for in-person attendees
 - Please do not attend in-person if you were exposed to Covid! (or monkey pox, or whatever new pandemic is next)
 - You won't miss out: I will post YouTube-hosted recordings (audio + screenshare only) for each class at the <u>course website</u>
 - Ask questions aloud or in the zoom chat window (+DM) (even if you are attending class in person)
- Changes will be sent via email by 9 am on class days
 - I will change to zoom-only if I am exposed to Covid!
 - > I will change to zoom-only for dangerous weather
 - > Nothing is more important than our health and safety...

Class-Sponsored Statistical Software

- To help address the needs of different lowa degree programs, I will show examples using STATA, R, and SAS software
 - STATA (aka, Stata) = "Software for Statistics and Data Science"
 - R = free implementation of what was initially the "S" language
 - SAS = "Statistical Analysis System" (won't be featured in handouts, though)
- Why not SPSS? Because it doesn't have as much room to grow (and thus it isn't used in any other EMS advanced classes)
 - As in SPSS, drop-down windows can also generate syntax in STATA and in SAS "enterprise" (which I don't use, and you won't need to)
 - > SPSS could be used for some—but not all—of our content
- My story: After SPSS, I became a heavy-duty SAS enthusiast who:
 - Picked up enough STATA initially to teach workshops using it, and I am learning it better now that I teach it in my classes
 - Is (begrudgingly) learning enough (base) R to add it to my classes, so it's possible you learned how to do the same things differently but correctly
 - > So if you have **STATA or R tips**, <u>please</u> share them with me!

Which Program: SAS, STATA, or R?

• I am assuming you know how to use at least one of these!

- > Each is available (with VPN) in the free U lowa Virtual Desktop
- More programs = more "technical skills" for your CV; easier collaboration with colleagues (who only know one program)
- > For intro handouts and videos, please see materials posted 2/7 here
- **To consider** when choosing which program to focus on:
 - Future use: R can be freely installed on your own machine; SAS has a free web-based <u>SAS OnDemand</u>; STATA install = \$\$\$
 - STATA is popular in fields that use large, weighted survey data (e.g., sociology, political science, public health, EPLS at Iowa)
 - R will be used exclusively in classes by Drs. Aloe, LeBeau, or Templin, and it has become increasingly mainstream, **but**:
 - R packages are only as good as their authors (so little quality control)
 - Syntax and capabilities are idiosyncratic to the packages (grrrrrr)
 - I have found incorrect or impossible results, even for "good" packages

Class-Sponsored Statistical Software

- **STATA and R** will be the primary packages emphasized
- <u>PilesOfVariance.com</u> currently has examples of every model in my textbook using SAS, SPSS, STATA, and Mplus (and some using R)
 - > Some textbook examples may be used in class, along with unique examples
 - STATA MIXED and R (various packages): can used for homework and I will provide syntax and output for all unique class examples
 - For models in which the answers diverse across programs, two versions of the same homework will be offered (one in STATA, and one in R)
 - SPSS MIXED: syntax is very similar to that of SAS MIXED, and it has largely the same functionality (so you can use it for some of the course homework), but I will not be adding it to any unique course examples
 - Mplus: syntax is very different, and it does not have REML estimation, and thus you cannot use it for most of the homework in this class
 - We will use Mplus to do multivariate multilevel models (aka, multilevel "structural equation modeling"), such as in multilevel mediation

This Semester's Topics

- Review of single-level linear general and generalized models on your own as needed (especially interaction terms!)
 - > See <u>PSQF 6243</u> (for general) and <u>PSQF 6270</u> (for generalized)
- Univariate MLMs:
 - General MLMs for two-level nested data
 - General MLMs for two-level cross-classified data
 - Generalized MLMs for two-level nested data
 - Generalized MLMs for two-level cross-classified data (aka, explanatory item response theory models)
- Multivariate MLMs (*aka*, multilevel structural equation models):
 - > For path analysis and mediation; symmetry in predictors and outcomes
- Readings also provided for special topics as time permits:
 - > Power analysis, three-level models, location-scale models

Multilevel Models (MLMs) for Clustered* Data

- **Clustering = Nesting = Grouping = Hierarchies*
 - Key idea: Outcomes with >1 dimension of sampling simultaneously ("micro" units are nested in one or more types of "macro" units)
 - ➤ Each sampling dimension is considered its own "level" → MLM
 - MLMs can be used to predict outcomes from two-level (or more-level) sampling designs that result in nested and/or crossed observations
- The term "Multilevel Model" (MLM) has many synonyms:
 - General Linear Mixed-Effects Models (Fixed + Random = Mixed)
 - Random Coefficients Models (Random effects = latent variables)
 - Hierarchical Linear Models (HLM, but not = hierarchical regression)
 - > Most MLM software is "univariate" \rightarrow predict 1 outcome at a time
 - Multivariate MLMs can be estimated as "multilevel structural equation models" to predict 2+ outcomes at once (+ address missing predictors)

Examples of **Nested** Designs

- Examples of **two-level** sampling designs:
 - Students (level 1) nested in classes/teachers (level 2)
 - Patients (level 1) nested in doctors (level 2)
 - Citizens (level 1) nested in countries (level 2)
- Examples of **three-level** sampling designs:
 - Students (level 1) nested in classes/teachers (level 2) nested in schools (level 3)
 - Patients (level 1) nested in doctors (level 2) nested in hospitals (level 3)
 - Citizens (level 1) nested in survey years (level 2) nested in countries (level 3)

Examples of **Crossed** Designs

- Examples of two-level cross-classified sampling designs:
 - > Two kinds of nesting: Students (level 1) nested in both schools (level-2) and neighborhoods (crossed at level 2)
 - Repeated measures: Responses (level 1) nested in both subjects (level 2) and items (crossed at level 2)
 - Reliability assessment: Ratings (level 1) nested in both raters (level 2) and targets (crossed at level 2)
 - Students who change classes over time: occasions (level 1) nested in both students (level 2) and classes (crossed at level 2)
- Example of **three-level cross-classified** sampling designs:
 - Ratings (level 1) nested in both children (level 2) and raters (crossed at level 2); raters are nested within sites (level 3)
 - Responses (level 1) nested in both students (level 2) and items (crossed at level 2); students are nested within schools (level 3)

Labels for Organizing Models

- <u>Outcome type</u>: General (normal) vs. Generalized (not normal)
- <u>Dimensions of sampling</u>: One (so one variance term per outcome) vs.
 <u>Multiple</u> (so multiple variance terms per outcome) -> OUR WORLD
- <u>General Linear Models</u>: conditionally normal outcome distribution, fixed effects (identity link; only one dimension of sampling)

Note: Ordinary Least Squares is only for GLM

- <u>Generalized Linear Models</u>: any conditional outcome distribution, fixed effects through link functions, no random effects (only one dimension)
- <u>General Linear Mixed Models</u>: conditionally normal outcome distribution, fixed and random effects (identity link, but multiple dimensions of sampling)
- <u>Generalized Linear Mixed Models</u>: any conditional outcome distribution, fixed and random effects through link functions (multiple dimensions)
 - > Same concepts as for general*ized* or mixed separately, but with more complexity in estimation
- "Linear" → fixed effects predict the *link-transformed* <u>conditional mean</u> of outcome in a linear combination: (effect*predictor) + (effect*predictor)...

Levels of Analysis in Two-Level Nested Data

- <u>Between-Cluster (BC) Variation:</u>
 - Level-2 = "INTER-cluster differences" = cluster characteristics
- <u>Within-Cluster (WC) Variation:</u>
 - > Level-1 = "INTRA-cluster differences" = person characteristics
- Any variable measured per person could have both L2 between and L1 within variation!
 - > BC = some clusters are higher/lower on average than other clusters
 - > WC = some people are higher/lower than the rest of their cluster
 - Btw, univariate MLMs must address this differently for level-1 predictors vs. level-1 outcomes, but multivariate MLMs treat both the same way

• So how do MLMs "handle" multiple levels of sampling?

The Two Sides of *Any* Model

Model for the Means:

- Fixed Effects, the "structural" part (= latent variables means)
- What you are used to caring about for testing hypotheses
- How the expected outcome for a given observation varies as a function of their values for the predictor variables

Model for the Variance:

- Random Effects and Residuals, the "stochastic" or "error" part
 - Btw, random effect variances = latent variable variances
- > What you are used to **making assumptions about** instead
- ➤ How residuals are distributed and related across observations (persons, clusters, items, etc.) → these relationships are called "dependency" and this is the primary way that multilevel models differ from general linear models (GLMs; "regression")

What can MLM do for you?

1. Model dependency across observations

- Longitudinal, clustered, and/or cross-classified data? No problem!
- Tailor your model of sources of correlation to your data
- 2. Include categorical or continuous predictors at any level
 - Time-varying, person-level, cluster-level predictors for each variance
 - Explore reasons for dependency, don't just control for dependency

3. Does not require same data structure for each unit

• Unbalanced or missing data? No problem!

4. You already know how (or you will soon)!

- Use SPSS Mixed, SAS Mixed, STATA Mixed, Mplus, R, HLM, MlwiN...
- What's an intercept? What's a slope? What's a pile of variance?

1. Model Dependency

 Sources of dependency depend on the sources of variation created by your sampling design: residuals for outcomes from the same unit are likely to be related, which violates the GLM "independence" assumption

"Levels" for dependency = "levels of random effects"

- Sampling dimensions can be **nested**
 - e.g., time within person, person within cluster, school within district
- If you can't figure out the direction of your nesting structure, odds are good you have a crossed sampling design instead
 - e.g., persons crossed with items, raters crossed with targets
- > To have a "level", there must be random outcome variation due to sampling that **remains** after including the model's fixed effects
 - e.g., treatment vs. control does not create another level of "cluster" (but it would if you had multiple treatment and multiple control groups)

Dependency comes from...

- Mean differences across sampling units (e.g., clusters)
 - > Creates constant dependency (covariance) over persons
 - > Will be represented by a random intercept in our models
- Cluster differences in effects of person predictors
 - Creates non-constant dependency, the size of which depends on the value of the predictor for each person
 - > Will be represented by random slopes in our models
- Side note: MLMs can be extended to test for and allow heterogeneity of variance of other kinds
 - > e.g., within-classroom variance differs across classrooms
 - > These are called "location-scale mixed-effects models"
 - See Don Hedeker's work: <u>https://hedeker-sites.uchicago.edu/</u>

Why care about dependency?

- In other words, what happens if we have the wrong model for the variance (assume independent observations instead)?
- Validity of the tests of the predictors depends on having the "most right" model for the variance → all cluster dependency is accounted for via random effects
 - ➤ Estimates will usually be ok → come from model for the means, so long as effects are disaggregated across levels of analysis!
 - > Standard errors (and thus *p*-values) will be compromised
- The sources of variation that exist in your outcome will dictate what kinds of predictors will be useful
 - > Between-Cluster variation needs Between-Cluster predictors
 - > Within-Cluster variation needs Within-Cluster predictors
 - » Between-Item variation needs Between-Item predictors...

2 Options for Cluster Dependency

Represent Cluster Differences via Fixed Effects

- Include (#clusters−1) binary predictors for cluster membership in the model for the means → so cluster is NOT a model "level"
 - Main effects control for cluster mean differences only; interactions with person predictors are also needed to control for cluster slope differences
- Useful if #clusters < 10ish or you care about specific clusters, but then you cannot include cluster predictors → saturated mean diffs

<u>Represent Cluster Differences via Random Effects</u>

- Include a random intercept variance across clusters in the model for the variance → then cluster IS a model "level"
 - A random intercept controls for cluster mean differences only; a random slope variance is needed for cluster differences in person predictor slopes
- Better if #clusters > 10ish or you want to **predict** cluster differences

2. Include categorical or continuous predictors at any level of analysis

- "ANOVA" test differences among discrete groups
- "Regression" tests slopes for continuous predictors
- What if a predictor is assessed repeatedly but can't be characterized by discrete "conditions"?
 - > RM ANOVA or Regression won't work \rightarrow you need MLM
- Some things don't change over time \rightarrow time-invariant
- Some things do change over time \rightarrow time-varying
- Some things are measured at higher levels
- Interactions are possible at same level or across levels

3. Does not require same data structure per person (by accident or by design)

<u>RM ANOVA:</u> uses						MLM: uses	ID	Sex	Time	Y
data structure						stacked (long)	100	0	1	5
						data structure:	100	0	2	6
ID	Sex	T1	T2	Т3	T4	Only <u>rows</u> missing data are excluded	100	0	3	8
100	0	5	6	8	12		100	0	4	12
101	1	4	7		11		101	1	1	4
<u>People</u> missing any data are excluded (data from ID 101 are not included at all)					oro	100 uses 4 cases 101 uses 3 cases	101	1	2	7
					101		101	1	3	
							101	1	4	11

Time can also be **unbalanced** across people such that each person can have his or her own measurement schedule: Time "0.9" "1.4" "3.5" "4.2"...

4. You already know how!

- If you can do GLM, you can do MLM (and if you can do general<u>ized</u> linear models, you can do general<u>ized</u> multilevel models, too)
- How do you interpret an estimate for...
 - > the intercept?
 - > the slope of a continuous variable?
 - > the slope of a categorical variable?
 - > a variance component ("pile of variance")?