
PSQF 6270: Lecture 2

Generalized Linear Models 

for Binary and 

Categorical Outcomes
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• Topics:

➢ 3 parts of a generalized (single-level or multilevel) model

➢ Binary outcomes:

▪ Link functions and conditional distributions

▪ Significance testing, effect sizes, and correlations

➢ From binary to ordinal outcomes

▪ Thresholds vs intercepts; correlations

➢ Categorical outcomes: Same distribution, different link functions
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3 Parts of Generalized Linear Models

1. Non-normal conditional distribution of 𝒚𝒊:

➢ General linear models use a normal conditional distribution to describe 
the 𝑦𝑖 variance remaining after prediction via the fixed effects → this is 
the 𝑒𝑖 residual variance 𝝈𝒆

𝟐, which is estimated separately and usually 
assumed constant across observations (unless modeled otherwise)

➢ Other distributions are more plausible for categorical/bounded/skewed 
outcomes, so ML function maximizes the likelihood using those instead

➢ Btw, most conditional distributions do NOT have a single, separately 
estimated residual variance! (will be missing or replaced by multipliers)

➢ Agresti calls this part the “random component” (≠ random effects!)

➢ Why care? To get the most correct standard errors for fixed effects 
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3 Parts of Generalized Linear Models

2. Link Function = 𝒈(⋅): How the conditional mean to be predicted is 

transformed so that the model directly predicts an unbounded outcome

➢ Inverse link 𝒈−𝟏(⋅)= how to go back to conditional mean in data scale 

➢ Predicted outcomes (expected values from 𝒈−𝟏(⋅)) then stay in bounds

➢ e.g., binary outcome: conditional mean to be predicted is probability 

of 𝒚𝒊 = 𝟏, so the model predicts a linked outcome: when inverse-linked, 

the predicted (i.e., expected) probability will stay between 0 and 1

➢ e.g., count outcome: conditional mean is expected count, so log of 

the expected count is predicted so that the expected count stays > 0

➢ e.g., GLM outcome: an “identity” link function (𝑦𝑖 * 1) is used given 

that the conditional mean is already unbounded… (in theory)
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A Real-Life Bummer of an Identity Link
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I won $10!

So what’s 

my bonus 

multiplier???
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3 Parts of Generalized Linear Models

3. Linear Predictor: How the fixed (and random) effects of predictors 

combine additively to predict a link-transformed conditional mean

➢ This is the same as usual, except the linear predictor directly predicts 

the link-transformed (model-scale) conditional mean, which we then 

convert (via inverse link) back into the data-scale conditional mean

▪ e.g., predict logit of probability directly, but inverse-link back to probability

▪ e.g., predict log of expected count, but inverse-link back to expected count

➢ That way we can still use the familiar “one-unit change” language to 

describe effects of model predictors (on the linked conditional mean)

➢ Btw, fixed effects are no longer determined: They have to be found 

through ML iteratively, the same as any variance-related parameters
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Normal GLM for Binary Outcomes?

• The unconditional mean (i.e., expected value from an empty 

model) of a binary outcome is the proportion of 1 values

➢ So given each person’s predictor values, the model predicts their 

conditional mean: the probability of a 1: 𝐩𝐫𝐨𝐛(𝒚𝒊 = 𝟏)

▪ The conditional mean has more possible values than the outcome!

➢ What about a GLM?  𝐩𝐫𝐨𝐛 𝒚𝒊 = 𝟏 = 𝜷𝟎 + 𝜷𝟏(𝒙𝒊) + 𝜷𝟐(𝒛𝒊) + 𝒆𝒊

▪ 𝜷𝟎 = expected probability of 𝒚𝒊 = 𝟏 when all predictors = 0

▪ 𝜷1 and 𝜷𝟐= change in 𝐩𝐫𝐨𝐛(𝒚𝒊 = 𝟏) for per unit change in predictor

▪ 𝒆𝒊 = difference of observed from predicted binary values

➢ Model becomes 𝒚𝒊 = (𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐨𝐟 𝟏)  +  𝒆𝒊

➢ What could possibly go wrong???
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Normal GLM for Binary Outcomes?
• Problem #1: A linear relationship between 𝑥𝑖 and 𝑦𝑖??? 

• Probability of a 1 is bounded between 0 and 1, but predicted 

probabilities from a linear model aren’t going to be bounded 

• Linear slope needs to shut off → made nonlinear

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 2 3 4 5 6 7 8 9 10 11

X Predictor

P
ro

b
 (

Y
=

1
)

??

??

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 2 3 4 5 6 7 8 9 10 11

X Predictor

P
ro

b
 (

Y
=

1
)

We have this… But we need this…

7    



PSQF 6270: Lecture 2

Generalized Models for Binary Outcomes

• Solution to #1: Rather than predict 𝐩𝐫𝐨𝐛(𝒚𝒊 = 𝟏) directly, the model 
transforms it into an unbounded outcome using a link function:

➢ Step 1: Transform probability into odds =
𝐩𝐫𝐨𝐛 𝒚𝒊=𝟏

𝐩𝐫𝐨𝐛(𝒚𝒊=𝟎)

▪ If 𝐩𝐫𝐨𝐛 𝒚𝒊 = 𝟏 = 𝟎. 𝟕 then 𝐨𝐝𝐝𝐬 𝒚𝒊 = 𝟏 = 𝟐. 𝟑𝟑 and 𝐨𝐝𝐝𝐬(𝒚𝒊 = 𝟎) = 𝟎. 𝟒𝟑

▪ The odds scale is skewed, asymmetric, and ranges 0 to +∞ → Not a good outcome!

➢ Step 2: Take natural log of odds → “logit” link:  𝐥𝐨𝐠
𝐩𝐫𝐨𝐛 𝒚𝒊=𝟏

𝐩𝐫𝐨𝐛 𝒚𝒊=𝟎

▪ If 𝐩𝐫𝐨𝐛 𝒚𝒊 = 𝟏 = 𝟎. 𝟕, then 𝐥𝐨𝐠𝐢𝐭 𝒚𝒊 = 𝟏 = 𝟎. 𝟖𝟓 and 𝐥𝐨𝐠𝐢𝐭 𝒚𝒊 = 𝟎 = −𝟎. 𝟖𝟓

▪ Logit scale is now symmetric about 0, range is ±∞ → Now a good outcome to predict!

-4 -2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Logit

P
ro

b
a
b
ilt

y

Probability

→ “data 

       scale”

Logit

→ “model  

      scale”

0.99 4.6

0.90 2.2

0.50 0.0

0.10 −2.2

Can you guess 

what 𝐩𝐫𝐨𝐛 =
. 𝟎𝟏 would be 

on the logit 

scale?

Logit Scale

P
ro

b
a
b

il
it

y
 S

ca
le

8    



Image borrowed from Figure 17.3 of: Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: 

An introduction to basic and advanced multilevel modeling (2nd ed.). Sage.
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Solution #1:  From Probability to Logits

• A Logit link is a nonlinear transformation of probability:

➢ Equal intervals in logits are NOT equal intervals of probability

➢ Linear model creates a predicted logit (ranging from ±∞), which 

inverse-links into a predicted probability that shuts off by 0 or 1

Neutral 

for each:

prob = .5

odds = 1

logit = 0
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Top metric is probability: 𝐩𝐫𝐨𝐛 𝒚𝒊 = 𝟏

Bottom metric is log-odds: 𝐥𝐨𝐠𝐢𝐭 𝒚𝒊 = 𝟏 = 𝐥𝐨𝐠
𝐩𝐫𝐨𝐛(𝒚𝒊=𝟏)

𝐩𝐫𝐨𝐛(𝒚𝒊=𝟎)
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Normal GLM for Binary Outcomes?

• What about a GLM?  𝐩𝐫𝐨𝐛 𝒚𝒊 = 𝟏 = 𝜷𝟎 + 𝜷𝟏(𝒙𝒊) + 𝜷𝟐(𝒛𝒊) + 𝒆𝒊

• If 𝒚𝒊 is binary, then 𝒆𝒊 can only be 2 things:  𝒆𝒊 = 𝒚𝒊 − ෝ𝒚𝒊

➢ If 𝒚𝒊 = 0 then 𝒆𝒊 
= (0 − predicted probability)

➢ If 𝒚𝒊 = 1 then 𝒆𝒊 = (1 − predicted probability)

• Problem #2a: So the residuals can’t be normally distributed

• Problem #2b: The residual variance can’t be constant over ෝ𝒚𝒊 

because the mean and variance are dependent for binary

➢ Variance of binary variable: 𝐕𝐚𝐫 𝒚𝒊 = 𝐩𝐫𝐨𝐛 𝒚𝒊 = 𝟏 ∗ 𝐩𝐫𝐨𝐛(𝒚𝒊 = 𝟎)
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Mean

Variance

(Conditional) Mean and Variance of a Binary Variable



Top image borrowed from: https://en.wikipedia.org/wiki/Normal_distribution 

Bottom image borrowed from: https://www.boost.org/doc/libs/1_70_0/libs/math/doc/html/math_toolkit/dist_ref/dists/bernoulli_dist.html
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Solution to #2:  Bernoulli Distribution
• Rather than using a normal conditional distribution for the 

outcome, we will use a Bernoulli conditional distribution
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https://en.wikipedia.org/wiki/Normal_distribution
https://www.boost.org/doc/libs/1_70_0/libs/math/doc/html/math_toolkit/dist_ref/dists/bernoulli_dist.html
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3 Scales of Predicted Binary Outcomes
• logit:  𝐥𝐨𝐠

𝐩𝐫𝐨𝐛(𝒚𝒊=𝟏)

𝐩𝐫𝐨𝐛(𝒚𝒊=𝟎)
= 𝝁𝒊 𝐨𝐫 ෝ𝝁𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒙𝒊) + 𝜷𝟐(𝒛𝒊)

➢ Predictor slopes are linear and additive like usual, but 
𝜷 = difference in logit per one-unit difference in predictor

• odds:  
𝐩𝐫𝐨𝐛(𝒚𝒊=𝟏)

𝐩𝐫𝐨𝐛(𝒚𝒊=𝟎)
= 𝐞𝐱𝐩 𝜷𝟎 + 𝜷𝟏𝒙𝒊 + 𝜷𝟐𝒛𝒊

• probability:  𝐩𝐫𝐨𝐛 𝒚𝒊 = 𝟏 = 𝒑𝒊 𝐨𝐫 ෝ𝒑𝒊 =
 𝐞𝐱𝐩 𝜷

𝟎
+𝜷

𝟏
𝒙

𝒊
+𝜷

𝟐
𝒛

𝒊

𝟏+𝐞𝐱𝐩 𝜷
𝟎
+𝜷

𝟏
𝒙

𝒊
+𝜷

𝟐
𝒛

𝒊

or                     𝐩𝐫𝐨𝐛 𝒚𝒊 = 𝟏 = 𝒑𝒊 𝐨𝐫 ෝ𝒑𝒊 =
𝟏

𝟏+𝐞𝐱𝐩 −𝟏(𝜷
𝟎
+𝜷

𝟏
𝒙

𝒊
+𝜷

𝟐
𝒛

𝒊
)

• This “logistic regression” model (as it is usually called) can be estimated 

using SAS PROC GLIMMIX (LINK=LOGIT, DIST=BINARY) or PROC LOGISTIC; 

STATA LOGIT/GLM; or R GLM family = binomial(link = logit))
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𝐠(⋅) link
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inverse 

link
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Converting Across the 3 Outcome Scales

• e.g., for 𝐥𝐨𝐠
𝐩𝐫𝐨𝐛(𝒚𝒊=𝟏)

𝐩𝐫𝐨𝐛(𝒚𝒊=𝟎)
= 𝝁𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒙𝒊) + 𝜷𝟐(𝒛𝒊)

  

• You can “unlogit” the model-predicted conditional mean 𝝁𝒊 all the way back 
into probability to express predicted outcomes, but you can only unlogit the 
slopes back into odds ratios (not all the way back to changes in probability)

• Order of operations: build predicted logit outcome, then logit → probability
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Direction Conditional 

Mean

Slope 

for 𝒙𝒊

Slope 

for 𝒛𝒊

Predicted logit outcome

(i.e., given by “the link”):
𝝁𝒊 𝜷𝟏 𝜷𝟐

From logits to odds (or 

odds ratios for effect sizes):

Odds: 

𝐞𝐱𝐩(𝝁𝒊)
Odds ratio: 

𝐞𝐱𝐩(𝜷𝟏)
Odds ratio:

𝐞𝐱𝐩(𝜷𝟐)

From logits to probability 

(given by the “inverse link”):

𝐞𝐱𝐩(𝝁𝒊)

𝟏 + 𝐞𝐱𝐩(𝝁𝒊)

Doesn’t 

make 

any sense!

Doesn’t 

make 

any sense!
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What happened to 𝒆𝒊?

• logit:  𝐥𝐨𝐠
𝐩𝐫𝐨𝐛(𝒚𝒊=𝟏)

𝐩𝐫𝐨𝐛(𝒚𝒊=𝟎)
= 𝝁𝒊 𝐨𝐫 ෝ𝝁𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒙𝒊) + 𝜷𝟐(𝒛𝒊)

➢ No residual is shown—not because the prediction is perfect, but 

because residual variance (𝝈𝒆
𝟐, the variance of the 𝒆𝒊 terms) is not 

an estimated model parameter—it is a direct function of 𝝁𝒊

• However, the same model is sometimes described this way:

𝒚𝒊
∗ = 𝜷𝟎 + 𝜷𝟏(𝒙𝒊) + 𝜷𝟐(𝒛𝒊) + 𝒆𝒊

∗

➢ 𝒚𝒊
∗ is the underlying “latent” response variable that is actually 

continuous, but we’ve only observed the binary version

➢ Because 𝒚𝒊
∗ is imaginary, setting a scale for it (i.e., for the variance 

of 𝒆𝒊
∗) requires borrowing one from a continuous distribution

▪ Which distribution maps onto your choice of link function!
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Image borrowed from: https://en.wikipedia.org/wiki/Logistic_distribution 
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Distribution of Latent Response 𝒚𝒊
∗

• Example of predicting an underlying continuous imaginary 

(“latent”) response: 𝒚𝒊
∗ = 𝜷𝟎 + 𝜷𝟏(𝒙𝒊) + 𝜷𝟐(𝒛𝒊) + 𝒆𝒊

∗

➢ This explanation borrows the scale of the logistic distribution for 𝒆𝒊
∗

So when predicting 𝒚𝒊
∗, then 

𝒆𝒊
∗~ logistic 0, 𝝈𝒆

𝟐 = 𝟑. 𝟐𝟗

From the Logistic Distribution:

Mean = ෝ𝒚𝒊
∗, Variance = 

𝝅𝟐

𝟑
𝒔𝟐, 

where s = scale factor for 

“over-dispersion” (must be 

fixed to 1 in binary outcomes)

𝟑. 𝟐𝟗 replaces residual variance 

in formulas for “pseudo-R2” 

but it can never be reduced!

Our logistic 

distribution shape
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https://en.wikipedia.org/wiki/Logistic_distribution


PSQF 6270: Lecture 2

Other Link Functions for Binary Data
• The idea that a “latent” continuous variable underlies an observed 

binary response also appears in a “probit regression” model:

➢ Using a probit link, the linear model predicts a different transformed 𝒚𝒊: 

     𝐩𝐫𝐨𝐛𝐢𝐭 𝒚𝒊 = 𝟏 = 𝚽−𝟏[𝐩𝐫𝐨𝐛 𝒚𝒊 = 𝟏 ] = 𝜷𝟎 + 𝜷𝟏(𝒙𝒊) + 𝜷𝟐(𝒛𝒊) 

▪ 𝚽 = standard normal cumulative distribution function, so the link-transformed 𝒚𝒊 

is the 𝒛-value that corresponds to the location on standard normal curve below 

which the conditional mean probability is found (i.e., z-value for area to the left)

▪ Requires integration to inverse link from probits to predicted probabilities

➢ Same Bernoulli conditional distribution is used for the actual binary 

outcome, in which residual variance is still not separately estimated

▪ If probit is used to predict “latent” response 𝒚𝒊
∗, then probit says 

𝒆𝒊
∗~ 𝐧𝐨𝐫𝐦𝐚𝐥 𝟎, 𝝈𝒆∗

𝟐 = 𝟏. 𝟎𝟎 , whereas logit says 𝒆𝒊
∗~ 𝐥𝐨𝐠𝐢𝐬𝐭𝐢𝐜 𝟎, 𝝈𝒆∗

𝟐 = 3.29

➢ So given this difference in variance, probit coefficients are on a different 

scale than logit coefficients, and so their estimates won’t match… however…
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Left image: exact source now unknown, but I think it was from Don Hedeker

Right image: borrowed from Jonathan Templin
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Probit vs. Logit: Should you care? Pry not.

• Other fun facts about probit:

➢ Probit = “ogive” in the Item Response Theory (IRT) world

➢ Probit has no odds ratios (because it’s not made from odds)

➢ Probit is the only option in models using limited-information estimation!

• Both logit and probit assume symmetry of the probability curve, 
but there are other asymmetric options as well…

probit 

𝝈𝒆∗
𝟐 = 1.00

logit 

𝝈𝒆∗
𝟐 = 3.29

Rescale to equate 

linked outcomes: 

𝜷𝒍𝒐𝒈𝒊𝒕 =

𝜷𝒑𝒓𝒐𝒃𝒊𝒕 ∗

𝟏. 𝟕𝟎𝟏

You’d think it would 

be SD=1.814 to 

rescale, but it’s 1.701

𝒚𝒊 = 𝟎

P
ro

b
a
b

il
it

y
 𝒚

𝒊
=

𝟏

𝒚𝒊 = 𝟏

Link-Transformed 𝒚𝒊
∗ 

Predicted 𝝁𝒊 (link metric)
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Other Link Functions for Binary Outcomes

Model logit probit log-log complement. log-log

g(⋅) link 
log

𝑝𝑖

1 − 𝑝𝑖
= 𝜇𝑖

Φ−1 𝑝𝑖 = 𝜇𝑖 −log −log 𝑝𝑖 = 𝜇𝑖 log −log 1 − 𝑝𝑖 = 𝜇𝑖

g−1(⋅) 

inverse link 

(go back to 

probability):

𝑝𝑖 =
exp 𝜇𝑖

1 + exp 𝜇𝑖

𝑝𝑖 = Φ−1 𝜇𝑖 𝑝𝑖 = exp −exp −𝜇𝑖 𝑝𝑖 = 1 − exp −exp 𝜇𝑖

logit = probit*1.701 →

symmetry of prediction

log-log is for outcomes in 

which 1 is more frequent

complementary 

log-log is for outcomes in 

which 0 is more frequent

Below, 𝒑𝒊 = 𝐩𝐫𝐨𝐛(𝒚𝒊 = 𝟏)
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𝒆𝒊
∗~logWeibull "extreme value" 0.577, 𝜎𝑒∗

2 =
𝜋2

6
Also known as “Gumbel”

https://en.wikipedia.org/wiki/Gumbel_distribution


Image borrowed from: https://www.scribbr.com/statistics/standard-normal-distribution/ 
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Another Complication:  Thresholds! 
• Back to the idea of a continuous underlying response… 

• For example, using probit = standard normal, the purple line 

indicates the “threshold” at which 𝒚𝒊 = 𝟎 switches to 𝒚𝒊 = 𝟏
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𝒚𝒊 = 𝟎 𝒚𝒊 = 𝟏

Here, the threshold = −1:

→ prob 𝑦𝑖 = 0 = .16 !!!

Some logit/probit software 

gives thresholds instead of 

intercepts, especially for 

ordinal models (stay tuned)!

  intercept  → prob 𝑦𝑖 = 1
threshold → prob(𝑦𝑖 = 0)

intercept = threshold∗ −𝟏 

(because symmetry)

https://www.scribbr.com/statistics/standard-normal-distribution/
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Significance Testing for Binary Outcomes
• Wald tests can be used

to test fixed slopes, but 

most programs do NOT

use denominator DF

➢ If so, 𝑝-values may be too optimistic in small samples

➢ Btw, R results for Wald test 𝜒2 can differ from SAS/STATA because of 

how fixed effect standard errors are found (expected vs. observed info)

• For models estimated using ML, the model log-likelihood (𝑳𝑳) can 

also be used to assess relative fit (i.e., through model comparisons)

➢ 𝑳𝑳 = sum across individual LL values that results from the optimum 

values of the model parameters (that make the outcomes the tallest)

➢ Two flavors: Maximum Likelihood (ML) or Restricted ML (REML) 

▪ REML is only possible for conditionally normal outcomes, in which it

works better for smaller samples (is equivalent to ordinary least squares)

➢ Two directions: 𝑳𝑳 (bigger is better) or −𝟐𝑳𝑳 (smaller is better) 
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Uses Denominator 

Degrees of Freedom?

Test 1 

Slope*

Test >1 

Slope*

No: implies infinite 𝑁 𝑧 𝜒2(= 𝑧2)

Yes: adjusts based on 𝑁 𝑡 𝐹(= 𝑡2)

𝐹 ∗ # 𝑠𝑙𝑜𝑝𝑒𝑠 = 𝜒2
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Likelihood Ratio Tests (LRTs)
➢ Nested models can be compared using an LRT: (−2ΔLL Test)

1. Calculate −2ΔLL:   (−2LLfewer) – (−2LLmore) OR −2*(LLfewer− LLmore)

2. Calculate  Δdf:  (# Parmsmore) –(# Parmsfewer)

3. Compare −2ΔLL to 𝜒2 distribution with df = Δdf
CHIDIST in excel gives exact p-values for the difference test; 
so will STATA LRTEST and various functions in R

•  Add parameters? Model fit can be BETTER (if signif) or NOT BETTER 

•  Remove parameters? Model fit can be WORSE (if signif) or NOT WORSE

• Non-nested models can be compared by Information 
Criteria (IC) that also reflect model parsimony

➢ No 𝑝-values or critical values, just “smaller is better”

➢ AIC = Akaike IC     = −2LL +        2 *(#parameters)

➢ BIC = Bayesian IC  = −2LL + log(𝑁)*(#parameters) 

➢ AIC and BIC can also be used to compare the fit of different link 
functions for the same conditional distribution (e.g., logit vs. log-log)
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1. & 2. must be 

positive values!



Top left image borrowed from: https://en.wikipedia.org/wiki/Chi-squared_distribution 

Top right image borrowed from: https://www.globalspec.com/reference/69569/203279/11-9-the-f-distribution 
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Comparing Distributions for alpha = .05
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𝒕 vs. 𝒛 

(1 slope)

𝑭 crit = 161 

at DF =1 ,1

𝑭 crit = 4.96 

at DF =1 ,1

𝑭 crit = 242 

at DF =10 ,1

𝑭 crit = 2.98 

at DF =10 ,10

𝝌𝟐 crit = 

3.84 at 

DF =1

𝝌𝟐 crit = 

5.99 at 

DF =2

𝝌𝟐 for many slopes (𝒌=DF)

𝑭 crit = 2.18 

at DF = 8, 40

𝑭 crit = 6.04 

at DF = 8, 4

𝑭 for many slopes (𝒌=DF)

https://en.wikipedia.org/wiki/Chi-squared_distribution
https://www.globalspec.com/reference/69569/203279/11-9-the-f-distribution
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Effect Sizes for Binary Outcomes
• Odds Ratio (OR) → effect size for predictors of binary outcomes

• e.g., if 𝑥𝑖 is binary 
and 𝑧𝑖 is quantitative

➢ OR for 𝑥𝑖 slope = 𝐞𝐱𝐩 𝜷𝟏 =
prob 𝑦𝑖 = 1 𝑥𝑖 = 1 /prob 𝑦𝑖 = 0 𝑥𝑖 = 1
prob 𝑦𝑖 = 1 𝑥𝑖 = 0 /prob 𝑦𝑖 = 0 𝑥𝑖 = 0  

➢ OR for 𝑧𝑖 slope = 𝐞𝐱𝐩 𝜷𝟐 : same idea, but denominator is some 
reference value (e.g., mean) and numerator is “one unit” higher

➢ For each, you’ll have to decide at what value to hold other predictors to get the 
exact probabilities, but the odds ratio will only change if the predictors are part 
of an interaction (from marginal to conditional)

• OR is asymmetric: ranges from 0 to +∞; 
where 1 = no effect → logit slope = 0

➢ e.g., if 𝜷𝟏 = 𝟏, then exp 𝛽1 = 𝟐. 𝟕𝟐 → odds of 
𝑦𝑖 = 1 are 2.72 times higher per unit greater 𝑥𝑖

➢ e.g., if 𝜷𝟏 = −𝟏, then exp 𝛽1 = 𝟎. 𝟑𝟕→ odds of 
𝑦𝑖 = 1 are 0.37 times higher per unit greater 𝑥𝑖

➢ Can be more intuitive to phrase results as positive! 
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𝐥𝐨𝐠
𝐩𝐫𝐨𝐛(𝒚𝒊=𝟏)

𝐩𝐫𝐨𝐛(𝒚𝒊=𝟎)
= 𝜷𝟎 + 𝜷𝟏(𝒙𝒊) + 𝜷𝟐(𝒛𝒊)

slope pred logit pred odds odds ratio

1 1 2.72

1 2 7.39 2.72

1 3 20.09 2.72

1 4 54.60 2.72

slope pred logit pred odds odds ratio

-1 -1 0.37

-1 -2 0.14 0.37

-1 -3 0.05 0.37

-1 -4 0.02 0.37



PSQF 6270: Lecture 2

Converting Across the 3 Outcome Scales

• e.g., for 𝐥𝐨𝐠
𝐩𝐫𝐨𝐛(𝒚𝒊=𝟏)

𝐩𝐫𝐨𝐛(𝒚𝒊=𝟎)
= 𝝁𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒙𝒊) + 𝜷𝟐(𝒛𝒊)

  

• You can “unlogit” the model-predicted conditional mean 𝝁𝒊 all the way back 
into probability to express predicted outcomes, but you can only unlogit the 
slopes back into odds ratios (not all the way back to changes in probability)

• Order of operations: build predicted logit outcome, then logit → probability
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Direction Conditional 

Mean

Slope 

for 𝒙𝒊

Slope 

for 𝒛𝒊

Predicted logit outcome

(i.e., given by “the link”):
𝝁𝒊 𝜷𝟏 𝜷𝟐

From logits to odds (or 

odds ratios for effect sizes):

Odds: 

𝐞𝐱𝐩(𝝁𝒊)
Odds ratio: 

𝐞𝐱𝐩(𝜷𝟏)
Odds ratio:

𝐞𝐱𝐩(𝜷𝟐)

From logits to probability 

(given by the “inverse link”):

𝐞𝐱𝐩(𝝁𝒊)

𝟏 + 𝐞𝐱𝐩(𝝁𝒊)

Doesn’t 

make 

any sense!

Doesn’t 

make 

any sense!
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𝑅2 for binary outcomes? Not really

https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/

https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/

• General linear models use a conditional normal distribution for 𝑦𝑖 
(i.e., the 𝒆𝒊 residuals are normal) in which a SINGLE residual variance 
(around ෝ𝒚𝒊) is estimated separately from the fixed effects

➢ Allows direct calculation of 𝑅2 for variance explained and 
change in 𝑅2 between nested models (and 𝐹-tests thereof)

• In contrast, generalized linear models for binary outcomes use a 
conditional Bernoulli distribution for 𝑦𝑖 in which there is no single 
separately estimated residual variance (that is constant around ෝ𝒚𝒊)

➢ Instead, residual variance is determined by AND varies with the 
conditional mean, so an exact 𝑅2 is not possible in the same way 

➢ There are lots of attempts at “pseudo-𝑹𝟐“ variants that disagree 
wildly in practice, see some here: https://stats.idre.ucla.edu/other/mult-
pkg/faq/general/faq-what-are-pseudo-r-squareds/

➢ Btw, STATA LOGIT provides McFadden’s 𝑅2 = 1 −
𝐿𝐿𝑚𝑜𝑑𝑒𝑙

𝐿𝐿𝑒𝑚𝑝𝑡𝑦

but the user-created function fitstat provides several others
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https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/
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Pseudo-𝑅2 through Expected Variances
• This approach (credited to McKelvey & Zavoina, 1975) applies to 

many kinds of generalized linear (and mixed-effects) models:

➢ M&Z pseudo-𝑅2 on logit scale = 
𝐕𝐚𝐫(𝝁𝒊)

𝐕𝐚𝐫 𝝁𝒊 +𝐕𝐚𝐫(𝒆𝒊
∗)

=
𝐕𝐚𝐫(𝝁𝒊)

𝐕𝐚𝐫 𝝁𝒊 +𝟑.𝟐𝟗

➢ M&Z pseudo-𝑅2 on probit scale =
𝐕𝐚𝐫(𝝁𝒊)

𝐕𝐚𝐫 𝝁𝒊 +𝐕𝐚𝐫(𝒆𝒊
∗)

=
𝐕𝐚𝐫(𝝁𝒊)

𝐕𝐚𝐫 𝝁𝒊 +𝟏.𝟎𝟎

➢ 𝐕𝐚𝐫(𝝁𝒊) = variance of the predicted outcomes in linked metric

▪ Save model-scale predicted outcomes, then calculate their variance

➢ 𝐕𝐚𝐫(𝒆𝒊
∗) = conditional variance of “underlying residuals”

▪ Use known value based on underlying distribution of 𝑦𝑖
∗  link

▪ Keep in mind this uses model scale, not data scale (not probabilities), 
and so these 𝑅2 values are not really comparable to OLS variants

➢ Btw, this expected variance approach generalizes to calculation of 
intraclass correlation (ICC) when random effects are also included…
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Bivariate Association of Binary Variables
• The possible Pearson’s 𝒓 for binary variables will be limited when they 

are not evenly split into 0/1 because their variance depends on their mean

➢ Mean = prob 𝑦𝑖 = 1 = 𝑝𝑖 , Variance = 𝑝𝑖 1 − 𝑝𝑖 = 𝑝𝑖𝑞𝑖

• If two binary variables (𝑥𝑖 and 𝑦𝑖) differ in 𝑝𝑖, such that 𝑝𝑦 > 𝑝𝑥

➢ Maximum covariance: Cov(𝑥𝑖 , 𝑦𝑖)  =  𝑝𝑥(1 − 𝑝𝑦)

➢ This problem is known as “range restriction”

➢ Here this means the maximum Pearson’s 𝒓 

will be smaller than ±𝟏 it should be:

➢ Some examples using this formula 

to predict maximum Pearson 𝑟 values →

➢ So Pearson correlations may not adequately

describe relations of categorical variables…
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,

(1 )

(1 )

x y

x y

y x

p p
r

p p

−
=

−

px py max r

0.1 0.2 0.67

0.1 0.5 0.33

0.1 0.8 0.17

0.5 0.6 0.82

0.5 0.7 0.65

0.5 0.9 0.33

0.6 0.7 0.80

0.6 0.8 0.61

0.6 0.9 0.41

0.7 0.8 0.76

0.7 0.9 0.51

0.8 0.9 0.67



Top image borrowed from: https://www.john-uebersax.com/stat/tetra.htm 

Bottom image borrowed from: https://mathbitsnotebook.com/Algebra1/StatisticsReg/ST2CorrelationCoefficients.html 
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Meet Tetrachoric Correlation
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Data y2 = 0 y2 = 1

y1 = 0 a c

y1 = 1 b d

Tetrachoric reasoning: 

Given a bivariate normal 

distribution of the 

underlying continuous 

variables (𝒚𝒊
∗ version), 

what correlation would 

have created the 

observed proportion in 

each quadrant (→ cell)?

𝑟 = 1 𝑟 = 0 𝑟 = −11 > 𝑟 > 0 0 > 𝑟 > −1

https://www.john-uebersax.com/stat/tetra.htm
https://mathbitsnotebook.com/Algebra1/StatisticsReg/ST2CorrelationCoefficients.html
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Too Logit to Quit* https://www.youtube.com/watch?v=HFCv86Olk8E

• The logit is the basis for many other generalized models for 

categorical (ordinal or nominal; IRT “polytomous”) outcomes

• Next we’ll see how 𝐶 possible response categories can be predicted 

using 𝐶 − 1 binary “submodels” whose link functions carve up the 

categories in different ways, in which each binary submodel (usually) 

uses a logit or probit link to predict its outcome

• Types of categorical outcomes and their link function types:

➢ Definitely ordered categories: “cumulative” → ordinal

➢ Maybe ordered categories: “adjacent category” (not used much)

➢ Definitely NOT ordered categories: “generalized” → nominal 

(or “baseline category logit” or “multinomial regression”)

* Starts about 8 minutes into 15-minute video (and MY joke for the last 12+ years!)
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https://www.youtube.com/watch?v=HFCv86Olk8E
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Logit Models for 𝐶 Ordinal Categories
• Known as “cumulative logit” or “proportional odds” model in 

generalized models; known as “graded response model” in IRT

➢ SAS GLIMMIX (LINK=CLOGIT DIST=MULT) or PROC LOGISTIC; 

STATA OLOGIT/GOLOGIT2/GLM; R VGLM family=cumulative(parallel=TRUE)

• Models the probability of lower vs. higher cumulative categories via 

𝐶 − 1 submodels (e.g., if 𝐶 = 4 possible responses of 𝑐 = 0,1,2,3): 

          0 vs. 1,2,3       0,1 vs. 2,3         0,1,2 vs. 3

• Example with intercepts in an empty model (subscripts=parm, submodel)

➢ Submodel 1:  log
prob(𝑦𝑖>0)

prob(𝑦𝑖≤0)
= 𝛽01→ prob 𝑦𝑖 > 0 = exp 𝛽01 / 1 + exp 𝛽01

➢ Submodel 2:  log
prob(𝑦𝑖>1)

prob(𝑦𝑖≤1)
= 𝛽02 → prob 𝑦𝑖 > 1 = exp 𝛽02 / 1 + exp 𝛽02

➢ Submodel 3:  log
prob(𝑦𝑖>2)

prob(𝑦𝑖≤2)
= 𝛽03 → prob 𝑦𝑖 > 2 = exp 𝛽03 / 1 + exp 𝛽03

Submodel3Submodel2Submodel1
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I’ve named these submodels 

based on what they predict, 

but each program output will 

name them in their own way…



PSQF 6270: Lecture 2

Logit/Probit Models for 𝐶 Ordinal Categories
• Models the probability of lower vs. higher cumulative categories via

𝐶 − 1 submodels (e.g., if 𝐶 = 4 possible responses of 𝑐 = 0,1,2,3): 

 0 vs. 1,2,3       0,1 vs. 2,3         0,1,2 vs. 3

• Model predicts the middle category responses indirectly

• Example if predicting UP with intercepts with an empty model:

➢ Probability of 0 =       1 – Prob1   
Probability of 1 = Prob1– Prob2

Probability of 2 = Prob2– Prob3

Probability of 3 = Prob3– 0

• Ordinal models usually use a logit or probit link, but they can also 
use cumulative log-log or cumulative complementary log-log links

Submodel3 

→ Prob3

Submodel2 

→ Prob2

Submodel1
→ Prob1

The cumulative submodels that create these 

probabilities are each estimated using all the 

data (good, especially for categories not chosen 

often), but assume order in doing so (may be 

bad or ok, depending on your response format)
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Left image borrowed from: https://www.scribbr.com/statistics/standard-normal-distribution/ 
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Remember  Thresholds? It gets worse…
• For example, using probit = standard normal, the lines indicates the 

“threshold” 𝝉 at which the response goes to the next category

➢ For 0 vs. 1,2,3 → 𝝉𝟎𝟏 = −𝟐. 𝟎 = prob = .16 → probit of 0 instead of 1,2,3

➢ For 0,1 vs. 2,3 → 𝝉𝟎𝟐 = −𝟎. 𝟓 = prob = .38 → probit of 0,1 instead of 2,3

➢ For 0,1,2 vs. 3 → 𝝉𝟎𝟐 =  𝟏. 𝟓 = prob = .82 → probit of 0,1,2 instead of 3
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𝒚𝒊 = 𝟑𝒚𝒊 = 𝟏

• Most ordinal software using 

logit or probit links default 

to thresholds 

• intercept  → prob 𝑢𝑝𝑝𝑒𝑟
threshold → prob(𝑙𝑜𝑤𝑒𝑟)

• intercept = threshold∗ −1 

(because symmetry)

• I prefer to report intercepts!
𝒚𝒊 = 𝟎 𝒚𝒊 = 𝟐

https://www.scribbr.com/statistics/standard-normal-distribution/
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Ordinal Models:  Which way is up?
0 vs. 1,2,3       0,1 vs. 2,3         0,1,2 vs. 3

• Most common software uses a logically inconsistent parameterization 

using thresholds predicting DOWN and slopes predicting UP

➢ Threshold = 𝝉 = logit/probit of lower category (when predictors = 0)

➢ Slopes still provide change in logit/probit of upper category per unit predictor!

• e.g., 𝐥𝐨𝐠𝐢𝐭 𝐩𝐫𝐨𝐛 𝒚𝒊 > 𝟎 = −𝝉𝟎𝟏 + 𝜷𝟏 𝒙𝒊

➢ −𝝉𝟎𝟏 = logit of 0 (instead of 1,2,3) when 𝒙𝒊 = 𝟎 

➢ 𝜷𝟏 = change in logit of 1,2,3 (instead of 0) per unit 𝒙𝒊 ☺

• We are going to turn these into intercepts instead in our software

• e.g., 𝐥𝐨𝐠𝐢𝐭 𝐩𝐫𝐨𝐛 𝒚𝒊 > 𝟎 = 𝜷𝟎𝟏 + 𝜷𝟏 𝒙𝒊

➢ 𝜷𝟎𝟏 = logit of 1,2,3 (instead of 0) when 𝒙𝒊 = 𝟎  ☺

➢ 𝜷𝟏 = change in logit of 1,2,3 (instead of 0) per unit 𝒙𝒊 ☺

Submodel3 Submodel2 Submodel1
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Logit Models for 𝐶 Ordinal Categories
• Most ordinal software defaults to “proportional odds”: that SLOPES of 

predictors ARE THE SAME across binary submodels—for example 
(subscripts = parm, submodel, using intercepts)

➢ Submodel 1:  log
prob(𝑦𝑖>0)

prob(𝑦𝑖≤0)
 = 𝜷𝟎𝟏 + 𝜷𝟏(𝒙𝒊) + 𝜷𝟐(𝒛𝒊)

➢ Submodel 2:  log
prob(𝑦𝑖>1)

prob(𝑦𝑖≤1)
 = 𝜷𝟎𝟐 + 𝜷𝟏(𝒙𝒊) + 𝜷𝟐(𝒛𝒊)

➢ Submodel 3:  log
prob(𝑦𝑖>2)

prob(𝑦𝑖≤2)
= 𝜷𝟎𝟑 + 𝜷𝟏(𝒙𝒊) + 𝜷𝟐(𝒛𝒊)

• Proportional odds essentially means no interaction between submodel and 
predictor slope, which greatly reduces the number of estimated parameters

➢ Can be tested and changed to “partial” or “non” proportional odds in SAS LOGISTIC, 
STATA GOLOGIT2, and R VGLM; harder to find in mixed-effects models

➢ If the proportional odds assumption fails, you can use a nominal model instead; 
dummy-coding to create separate outcomes can approximate a nominal model 
for models with more complexity (like mixed-effects models)

• So what’s different about a nominal model…?
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Multi-Category Conditional Distribution
• Uses multinomial distribution: e.g., PDF for 𝐶 = 4 categories 

of 𝑐 = 0,1,2,3; an observed 𝑦𝑖 = 𝑐; and indicators 𝐼 if 𝑐 = 𝑦𝑖

     𝑓 𝑦𝑖 = 𝑐 = 𝑝𝑖0
𝐼[𝑦𝑖=0]

𝑝𝑖1
𝐼[𝑦𝑖=1]

𝑝𝑖2
𝐼[𝑦𝑖=2]

𝑝𝑖3
𝐼[𝑦𝑖=3]

➢ Works out to be the predicted probability of your response category 

(and probabilities must sum to 1: σ𝑐=1
𝐶 𝑝𝑖𝑐 = 1)

➢ Maximum likelihood estimation finds the most likely model 

parameters to predict the probability of each response category 

through *some kind of* (usually logit or probit) link function 

➢ Regression predicting nominal outcomes (instead of ordinal) is often 

called “multinomial regression” (e.g., in STATA), but this is strange 

because ordinal and nominal both use a multinomial distribution!

➢ So what’s the difference between ordinal and nominal? 

The *some kind of* link function! (and there’s a third one…)

Only 𝑝𝑖𝑐 for response 

𝑦𝑖 = 𝑐 gets used
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Alternative Link Functions for 𝐶 Categories, 

Each Built Using 𝐶 − 1 Submodels

• Cumulative logit/probit (used in IRT “graded response”): 
lower vs. higher category (using all categories in each submodel)

 0 vs. 1,2,3  0,1 vs. 2,3 0,1,2 vs. 3

➢ Slopes usually constrained equal across submodels by default

• Adjacent category logit/probit (used in IRT “partial credit”): 
each next highest category (2 categories per submodel)

 0 vs. 1  1 vs. 2  2 vs. 3

➢ Slopes usually constrained equal across submodels by default

• Baseline category logit (used in IRT “nominal response”): 
reference (=0 here) vs. each other category (2 categories per submodel): 

 0 vs. 1  0 vs. 2  0 vs. 3

➢ Slopes usually not constrained equal across submodels by default

➢ Assumes “independence of irrelevant alternatives”—that the same fixed effects 
would be found if the possible choices were not the same (empirically testable)
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I like this the best, 

but no one uses it 

for regression!



Top image borrowed from: https://www.john-uebersax.com/stat/tetra.htm 

Bottom image borrowed from: https://mathbitsnotebook.com/Algebra1/StatisticsReg/ST2CorrelationCoefficients.html 
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Remember Tetrachoric Correlation?
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Data y2 = 0 y2 = 1

y1 = 0 a c

y1 = 1 b d

Tetrachoric reasoning: 

Given a bivariate normal 

distribution of the 

underlying continuous 

variables (𝒚𝒊
∗ version), 

what correlation would 

have created the 

observed proportion in 

each quadrant (→ cell)?

𝑟 = 1 𝑟 = 0 𝑟 = −11 > 𝑟 > 0 0 > 𝑟 > −1

https://www.john-uebersax.com/stat/tetra.htm
https://mathbitsnotebook.com/Algebra1/StatisticsReg/ST2CorrelationCoefficients.html
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Tetrachoric → Polychoric Correlation

• Polychoric and tetrachoric correlations are similar:
➢ Both based on a bivariate normal distribution,

➢ Both try to represent the correlation that would 

have created the proportion of responses in each 

cross-tab cell (unique combo of row by column)

• Unfortunately, no such analog exists for nominal

• See this website for a more thorough 

example of an extension to polychoric!
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Data y2 = 0 y2 = 1

y1 = 0 a c

y1 = 1 b d

Tetrachoric reasoning: 

Given a bivariate normal 

distribution of the 

underlying continuous 

variables (𝒚𝒊
∗ version), 

what correlation would 

have created the 

observed proportion in 

each quadrant (→ cell)?

https://www.r-bloggers.com/2021/02/how-does-polychoric-correlation-work-aka-ordinal-to-ordinal-correlation/
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Correlations for Binary or Ordinal Variables
• Pearson correlation: between two quantitative variables, using the 

observed distributions (computed using means, variances, and covariance)

• Phi correlation: between two binary variables, still using the observed 

distributions (= Pearson with formula shortcut)

• Point-biserial correlation: between one binary and one quantitative 

variable, still using the observed distributions (and still = Pearson)

• Tetrachoric correlation: between “underlying continuous” distributions 

of two actually binary variables (not = Pearson) → based on probit!

• Polychoric correlation: between “underlying continuous” distributions 

of two ordinal variables (not = Pearson) → based on probit!

• (Bi/Poly)serial correlation: between “underlying continuous” (but really 

binary/ordinal) and observed quantitative variables (and not = Pearson)

• Bivariate statistics related to categorical variables should be provided using 

tetrachoric, biserial, or polychoric correlations instead of Pearson
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Line of Suspended Disbelief to Reduce Impact of Range Restriction
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Effect Size for Categorical Outcomes
• Because models for categorical outcomes are built using submodels 

for binary outcomes, odds ratios (OR) can still be used as an effect 
sizes for individual slopes in submodels for categorical outcomes

• Pseudo-𝑅2 for categorical outcomes will be trickier to compute…

➢ To use M&Z pseudo-𝑅2, you’d need to represent the sources of variance 
for each binary submodel, which translates readily into nominal models, 
but not so much into cumulative or adjacent-category models

➢ When it doubt (and you must provide some type of 𝑅2 value), find a way 
to correlate actual outcomes with a similarly-ranged model-predicted 
outcome that still maintains error; here, do this for each person:

▪ Binary: draw a random 0/1 value from a Bernoulli distribution 
with a mean given by their predicted probability of a 1 

▪ Categorical: calculate predicted probability of each of 𝐶 categories, then 
draw from a random multinomial distribution with those probabilities 

▪ Type of correlation will be dictated by outcome type (e.g., tetrachoric for 
binary or nominal submodels, polychoric or Spearman for ordinal response)
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Wrapping Up: Significant Differences
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General(ized) 

Models for 

Conditionally 

Normal Outcomes

Generalized Models for 

Categorical Outcomes

What is predicted directly? 𝑦𝑖 (via “identity link 

function” of *1)

Link-transformed 

probability of “1” or “0” 

(via logit, probit, etc.)

What estimator and conditional 

distribution (i.e., for 𝑦𝑖 after 

predictors) are typically used?

REML (is equal to 

OLS) and normal

ML and multinomial 

(with Bernoulli as special 

case when 𝐶 = 2)

How are global and specific 

effect sizes assessed?

Global: True 𝑅2

Specific: 𝑑, 𝑟, semi-

partial eta2, or 

standardized slopes

Global: Pseudo-𝑅2

Specific: usually odds 

ratios (or less commonly, 

convert 𝑡 into 𝑑 or 𝑟)

Can fixed effect estimates be 

compared directly between 

models?

Yes No, because they change 

scale due to different total 

variance… see Winship & 

Mare (1983, 1984)

https://www.researchgate.net/publication/247658150_Structural_Equations_and_Path_Analysis_for_Discrete_Data
https://www.jstor.org/stable/2095465
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