Fixed Effects:Why Centering Matters

- $\boldsymbol{y}_{\boldsymbol{i}}=$ Student achievement (GPA as percentage out of 100) $\boldsymbol{x}_{\boldsymbol{i}}=$ Parent attitudes about education (measured on 1-5 scale)
$\boldsymbol{z}_{\boldsymbol{i}}=$ Parent education level (measured in years of education)

$$
\begin{aligned}
& G P A_{i}=\beta_{0}+\beta_{1}\left(A t t_{i}\right)+\beta_{2}\left(E d_{i}\right)+\beta_{3}\left(A t t_{i}\right)\left(E d_{i}\right)+e_{i} \\
& G P A_{i}=30+1\left(A t t_{i}\right)+2\left(E d_{i}\right)+0.5\left(A t t_{i}\right)\left(E d_{i}\right)+e_{i}
\end{aligned}
$$

- Interpret $\boldsymbol{\beta}_{0}$:
- Interpret β_{1} :
- Interpret β_{2} :
- Interpret β_{3} : Attitude as Moderator:

Education as Moderator:

- Predicted GPA for attitude $=3$ and Ed = 12?

$$
75=30+1 *(3)+2 *(12)+0.5^{*}(3) *(12)
$$

How Centering Changes Fixed Effects

- $\boldsymbol{y}_{\boldsymbol{i}}=$ Student achievement (GPA as percentage out of 100) $\boldsymbol{x}_{\boldsymbol{i}}=$ Parent attitudes about education (now centered at 3)
$\boldsymbol{z}_{\boldsymbol{i}}=$ Parent years of education (now centered at 12)
$\boldsymbol{G P A} \boldsymbol{A}_{i}=\beta_{0}+\beta_{1}\left(A t t_{i}-3\right)+\beta_{2}\left(E d_{i}-12\right)+\beta_{3}\left(A t t_{i}-3\right)\left(E d_{i}-12\right)+e_{i}$
$G P A_{i}=75+7\left(A t t_{i}-3\right)+3.5\left(E d_{i}-12\right)+0.5\left(A t t_{i}-3\right)\left(E d_{i}-12\right)+e_{i}$
- Interpret $\boldsymbol{\beta}_{0}$:
- Interpret β_{1} :
- Interpret β_{2} :
- Interpret β_{3} : Attitude as Moderator:

Education as Moderator:

- But how did I know what the new fixed effects would be???

Model-Implied Predictor Simple Slopes

- Example equation for predicted GPA using centered predictors: $\widehat{G P A}_{i}=\beta_{0}+\beta_{1}\left(A t t_{i}-3\right)+\beta_{2}\left(E d_{i}-12\right)+\beta_{3}\left(A t t_{i}-3\right)\left(E d_{i}-12\right)$
- This model equation provides predictions for:
> Expected outcome given any combination of predictor values
- Any conditional (simple) main effect slopes implied by interaction term
> Any slope can be found as: what it is + what modifies it
- Three steps to get any model-implied simple main effect slope:

1. Identify all terms in model involving the predictor of interest
2. Factor out common predictor variable to find slope linear combination
3. Calculate estimate and SE for slope linear combination

- By "calculate" I of course mean "ask a program to do this for you"

Model-Implied Predictor Simple Slopes

- Example equation for predicted GPA using centered predictors: $\widehat{G P A}_{i}=\beta_{0}+\beta_{1}\left(A t t_{i}-3\right)+\beta_{2}\left(E d_{i}-12\right)+\beta_{3}\left(A t t_{i}-3\right)\left(E d_{i}-12\right)$

1. Identify all slopes in model involving the predictor of interest

To get attitudes slope: $\boldsymbol{E s t}=\beta_{1}\left(\right.$ Att $\left._{i}-3\right)+\beta_{3}\left(A t t_{i}-3\right)\left(E d_{i}-12\right)$
To get education slope: $E s t=\beta_{2}\left(E d_{i}-12\right)+\beta_{3}\left(A t t_{i}-3\right)\left(E d_{i}-12\right)$
2. Factor out predictor of interest to find slope linear combination

To get attitudes slope: $E s t=\left[\beta_{1}+\beta_{3}\left(E d_{i}-12\right)\right]$ that will multiply $\left(A t t_{i}-3\right)$
To get education slope: $\boldsymbol{E s t}=\left[\beta_{2}+\beta_{3}\left(A t t_{i}-3\right)\right]$ that will multiply $\left(E d_{i}-12\right)$

- Btw, the SEs for the new slopes provided by the program come from:
, $S E^{2}=$ sampling variance of slope estimate \rightarrow e.g., $\operatorname{Var}\left(\beta_{1}\right)=S E_{\beta_{1}}^{2}$
attitudes slope: $S E^{2}=\operatorname{Var}\left(\beta_{1}\right)+\operatorname{Var}\left(\beta_{3}\right)\left(E d_{i}-12\right)+2 \operatorname{Cov}\left(\beta_{1}, \beta_{3}\right)\left(E d_{i}-12\right)$
education slope: $\boldsymbol{S E} E^{2}=\operatorname{Var}\left(\boldsymbol{\beta}_{2}\right)+\operatorname{Var}\left(\beta_{3}\right)\left(\boldsymbol{A t t}_{i}-3\right)+2 \boldsymbol{\operatorname { C o v }}\left(\boldsymbol{\beta}_{2}, \beta_{3}\right)\left(A t t_{i}-3\right)$

Model-Implied Predictor Simple Slopes

- To request predicted simple slopes (= simple main effects):
> DO NOT include the intercept ($\boldsymbol{\beta}_{0}$ does not contribute to slopes)
> Include ONLY the fixed effects that contain the predictor of interest

$$
\widehat{G P A}_{i}=\beta_{0}+\beta_{1}\left(A t t_{i}-3\right)+\beta_{2}\left(E d_{i}-12\right)+\beta_{3}\left(A t t_{i}-3\right)\left(E d_{i}-12\right)
$$

\rightarrow attitudes slope: $\boldsymbol{E s t}=\left[\beta_{1}+\beta_{3}\left(E d_{i}-12\right)\right]$ that multiplies $\left(\right.$ Att $\left._{i}-3\right)$
\rightarrow education slope: $\boldsymbol{E s t}=\left[\boldsymbol{\beta}_{2}+\boldsymbol{\beta}_{3}\left(\boldsymbol{A t t}_{\boldsymbol{i}}-3\right)\right]$ that multiplies $\left(E \boldsymbol{d}_{\boldsymbol{i}}-\mathbf{1 2}\right)$
STATA: Each line starts with lincom, label at end of line after // comment

R: Coefficients are multipliers in GLHT entered in order of fixed effects

Regions of Significance for Simple Slopes

- For quantitative predictors, there may not be specific values of the moderator at which you want to know the slope's significance...
- For example, with age*woman (in which $0=m a n, 1=$ woman here):

$$
\widehat{y}_{i}=\beta_{0}+\beta_{1}\left(\text { Age }_{i}-85\right)+\beta_{2}\left(\text { Woman }_{i}\right)+\beta_{3}\left(\text { Age }_{i}-85\right)\left(\text { Woman }_{i}\right)
$$

\rightarrow age slope: $\quad E s t=_$that multiplies $\left(A g e_{i}-85\right)$
\rightarrow gender slope: Est $=$ \qquad that multiplies $\left(\right.$ Woman $\left._{i}\right)$

- Age slopes are only relevant for two specific values of binary woman:
cons*0 + age85* + woman*_ + age85*woman*_ // Age Slope for Men
cons*0 + age85* + woman*_ + age85*woman*_ // Age Slope for Women
- But there are many ages to request gender differences for...
cons*0 + age85* + woman*_ + age85*woman*_ //Gender Diff at Age=80
cons*0 + age85* + woman*_ + age85*woman*_ //Gender Diff at Age=90

Regions of Significance for Simple Slopes

- An alternative approach for continuous moderators is known as regions of significance (see Hoffman 2015 chapter 2 for refs)
- Rather than asking if the simple main effect of gender is still significant at a particular age, we can find the boundary ages at which the gender effect becomes non-significant
- We know that: EST / SE $=t$-value \rightarrow if $|t|>|1.96|$, then $p<.05$
- So we work backwards to find the EST and SE such that:

$$
\begin{aligned}
& \pm t= \pm 1.96=\frac{\text { Slope Estimate }}{\sqrt{\text { Variance of Slope Estimate }}}, \text { where: } \\
& \text { Gender Slope }\left(\text { Gender Difference) Estimate }=\beta_{2}+\beta_{3}(\text { Age }-85)\right. \\
& \text { Variance of Slope Estimate }=\operatorname{Var}\left(\beta_{2}\right)+2 \operatorname{Cov}\left(\beta_{2} \beta_{3}\right)(\text { Age }-85)+\operatorname{Var}\left(\beta_{3}\right)(\text { Age }-85)^{2}
\end{aligned}
$$

- Need to request "asymptotic covariance matrix" (COVB)
> Covariance matrix of fixed effect estimates (SE2 on diagonal)

Regions of Significance for Simple Slopes

$$
\begin{array}{|l|}
\pm t= \pm 1.96=\frac{\text { Slope Estimate }}{\sqrt{\text { Variance of Slope Estimate }}}, \text { where: } \\
\text { Gender Slope }(\text { Gender Difference }) \text { Estimate }=\beta_{2}+\beta_{3}(\text { Age }-85) \\
\text { Variance of Slope Estimate }=\operatorname{Var}\left(\beta_{2}\right)+2 \operatorname{Cov}\left(\beta_{2} \beta_{3}\right)(\text { Age }-85)+\operatorname{Var}\left(\beta_{3}\right)(\text { Age }-85)^{2} \\
\hline
\end{array}
$$

- For example, age*woman ($0=$ man, $1=$ woman), age $=$ moderator:

$$
\widehat{y}_{i}=\beta_{0}+\beta_{1}\left(\text { Age }_{i}-85\right)+\beta_{2}\left(\operatorname{Woman}_{i}\right)+\beta_{3}\left(\text { Age }_{i}-85\right)\left(\text { Woman }_{i}\right)
$$

- $\beta_{2}=-0.5306^{*}$ at age=85, $\quad \operatorname{Var}\left(\beta_{2}\right) \rightarrow S E^{2}$ for β_{2} was 0.06008
- $\beta_{3}=-0.1104^{*}$ unconditionally, $\operatorname{Var}\left(\beta_{3}\right) \rightarrow S E^{2}$ for β_{3} was 0.00178
- Covariance of $\beta_{2} S E$ and $\beta_{3} S E$ was 0.00111
- Regions of Significance for Moderator of Age = $\mathbf{6 0 . 1 6}$ to $\mathbf{7 9 . 5 2}$
> The gender effect β_{2} is predicted to be significantly negative above age 79.52, non-significant from ages 79.52 to 60.16 , and significantly positive below age 60.16 (because non-parallel lines will cross eventually).

