Latent Trait Measurement
Models for Binary Responses:
Part 1

- Topics:
> The Big Picture of Latent Trait Measurement Models
> Review of Regression Models for Binary Outcomes
> 1,2, 3, and 4 Parameter IRT (and Rasch) Models
> Item and Test Information (for Indexing Reliability)
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Reviewing the Big Picture... of CTT

- CTT predicts the total: Ytotal, = TrueScore, + error,

> Items are assumed exchangeable because their properties are not
part of the model for creating a latent trait estimate (as total)

> Because the sum score serves AS the latent trait estimate, it
can be problematic to make comparisons across different forms

= Item difficulty = mean of item (is sample-dependent)
= Item discrimination = item-remainder correlation (is sample-dependent)

> Estimates of reliability assume (without testing) unidimensionality;
also tau-equivalence (alpha) or parallel items (Spearman-Brown)

= Measurement error is (most often) assumed constant across the trait

- How do you make your instrument better?

> Get more items. What kind of items? More.

PSQF 6249: Lecture 5a



Reviewing the Big Picture... of CFA

- CFA predicts the ITEM response: y,. = u; + 1;F; + e,
> Linear regression relating continuous item response to latent predictor F

> Both items AND subjects matter in predicting item responses

Item difficulty = intercept y; (in theory, sample independent)

Item discrimination = factor loading 4, (in theory, sample independent)

> The goal of the factors is to recreate the observed covariances among items, so
factors represent testable assumptions about the pattern of item covariance

Responses should be unrelated after controlling for factors - local independence

But if not, error covariances could be used to capture unexpected multidimensionality!

- Because individual item responses are included:
> Items can vary in discrimination (= Omega sum score reliability) and difficulty

> To make your instrument better, you need MORE and BETTER items...
With higher standardized factor loadings - with greater information = 4;% / Var(e;)
- Measurement error is still assumed constant across the latent trait (one value)
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From CFA to IRT and IFA

Outcome Type 2 Observed Latent
Model Family Name Predictor x; Predictor x;
“Linear” Confirmatory

Continuous outcomes =
“General Linear Model” Regression

Discrete/categorical outcomes - Logistic/Probit/ Item Response

“Generalized Linear Model” Multinomial Theory and Item
Regression Factor Analysis

Factor Models

- Basis of Item Response Theory (IRT) and Item Factor
Analysis (IFA) lies in models for discrete outcomes,
which are called “generalized” linear models

- Thus, IRT and IFA will be easier to understand after
reviewing concepts from generalized linear models...

> For more, see Lecture 2 and Examples 2a and 2b from this class
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https://www.lesahoffman.com/PSQF6270/index.html

3 Parts of Generalized Linear Models

C. Actual <: A. Link B. Same Linear
Data Function Predictive Model

A. Link Function: Transformation of conditional mean to keep
predicted outcomes within the bounds of the outcome

B. Same Linear Model: How the model linearly predicts
the link-transformed conditional mean of the outcome

C. Conditional Distribution: How the outcome could be
distributed given the possible values of the outcome

Generalized linear models work for many kinds of outcomes...
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Here’s how it works for binary outcomes

- Let's say we have a single binary (0 or 1) outcome...y; (i=person)
- The mean of a binary outcome is the proportion of 1 values

> So given each person’s predictor values, the model tries to predict
the conditional mean: the probability of havinga 1: p(y; = 1)

« The conditional mean has more possible values than the outcome!

> General linear model: p(y; = 1) = B, + B.(x;) + ¢

= B, = expected probability of y; = 1 when all predictors = 0
= [, = expected change in p(y; = 1) for per unit change in x;
- e; = difference between observed minus predicted binary values

> Model becomes y; = (predicted probability of 1) + e,
> What could possibly go wrong???
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Normal GLM for Binary Outcomes!?

- Problem #1: A linear relationship between x; and y;?7??

- Probability of a 1 is bounded between 0 and 1, but predicted
probabilities from a linear model aren’t going to be bounded

- Linear relationship needs to shut off > made nonlinear

We have this... But we need this...
1.40 . 1.40
1.20 7 e 1.20
1.00 B 1.00
~ 0.80 L ~ 0.80 /4/’”
Il 0.60 . Il 0.60
= 0.40 . = 0.40
\—’/ P \—r/
. 0.20 . . 0.20
0.00 > 0.00
020 o °F -0.20
_0.40 '040 I | | | | | | | | |
1 2 3 456 7 8 91011 1 2 3456 7 8 91011
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Generalized Models for Binary Outcomes

- Solution to #1: Rather than predicting p(y; = 1) directly, the model
transforms it into an unbounded variable using a link function:
pi_ _ prob(y;=1)
1-p;  prob(y;=0)
If p(y; = 1) = .7 then 0dds(1) = 2.33; 0dds(0) = 0.429
But odds scale is skewed, asymmetric, and ranges 0 to +c0 & Not a good outcome!

i

Di
1-p;

> Transform probability into odds:

> Take natural log of odds - called “logit” link: Log[

If p(y; = 1) =.7, then Logit(1) = 0.846; Logit(0) = —0.846
Logit scale is now symmetric about 0, range is o0 & Now a good outcome to predict!

5 1< -1 | Probability | Logit
2. > “data > “model
3 . scale” scale”
E S 0.99 4.6 Can you guess
Q ) 0.90 2.2 what p(.01)
Q 3 would be on
O ) 0.50 0.0 the logit scale?
A 1= Y 0.10 -2.2

ngit Scale
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Solution to #1: Probability to Logits

- A Logit link is a nonlinear transformation of probability:

> Equal intervals in logits are NOT equal intervals of probability
> Logits range from too and are symmetric about prob = .5 (= logit = 0)

> Now we can use a linear model = The model will linearly predict the
expected logit, which translates into a nonlinear prediction of probability
- the outcome conditional mean (probability) shuts off at 0 or 1 as needed

p
Probability: {J,:JS u,llz 0,127 0.50 n.l?i {),TER 0,:)5

Pi=pQ:= l)l | Zero-point on
each scale:

Odds: [ P ]

1-pi Prob = .5
Logit Odds = 1
(log odds): Logit = 0
Log 1 glpi] -4 K 2 -1 0 I1 2 3 4

logit(p)

Image borrowed from Figure 17.3 of: Snijders, T.A. B., & Bosker, R.]. (2012). Multilevel analysis:
An introduction to basic and advanced multilevel modeling (2" ed.). Sage.
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Normal GLM for Binary Outcomes!?

General linear model: p(y; =1) =B, + B,(x;) + e;

If y, is binary, then e, can only be 2 things: e; = y; — y;
> If y; = 0 then e; = (0 - predicted probability)
> If y; =1 then e; = (1 - predicted probability)

Problem #2a: So the residuals can’'t be normally distributed

Problem #2b: The residual variance can't be constant over y;
as in GLM because the mean and variance are dependent

> Variance of binary variable: Var(y;,) = p; * (1 — p;)

Mean and Variance of a Binary Variable
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Solution to #2: Bernoulli Distribution

- Rather than using a normal conditional distribution for the
outcome, we will use a Bernoulli conditional distribution

Univariate Normal PDF:

1
f(y) = ——*exp| -
216> { 2 ’

1*(Yi _H)Z

Bernoulli Distribution PDF

p: Only 1
parameter

Probability

0 1

Random Variable

10} UM L RS B L L
Normal: 2 p=0, 0202, —
g . =0, o=10,— |
' W=0, g=50,— |
parameters o0, Oan—
-g 05 _ 1
(o)
=
=04
()
=
¥
- -3 z 1 [ 1 2 3 1 5

Bernoulli PDF;

f(y;)=(p)" (1-p)

=p(1) if y,=1,
p(0) if y,=0

Top image borrowed from:
Bottom image borrowed from:
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https://en.wikipedia.org/wiki/Normal_distribution
https://www.boost.org/doc/libs/1_70_0/libs/math/doc/html/math_toolkit/dist_ref/dists/bernoulli_dist.html

Predicted Binary Outcomes

. i=1
- Logit: Log [5&:0;] =By + f1(x;)

> Predictor effects are linear and additive like in regular regression,
but B fixed effects describe changes to predicted logit

. Odds: [M = exp(B, + Bx;)

p(yi=0)
ege 0+ 1 l)
- Probability: p(y;=1) = 1+2§§gﬁ} +Il§ :)
1

orequivalently p(y; =1) = e,

- Is "logistic regression” when using an observed x; predictor;

Is IRT/IFA when using a latent factor as the x; predictor

- Foreshadowing: IRT models are usually described usin? the
probability formula, whereas IFA models use the logit formula
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Converting Across the 3 Scales

- e.g., for Log [p(yizl)] =¥ =PBo+ B.1(x:)

p(yi=0)

Conditional Slope
W ETY for x;

Predicted logit outcome Vi B1
(i.e., given by “the link"):
From logits to odds (or odds Odds: Odds ratio:
ratios for effect sizes): exp(y;) exp(f1)
From logits to probability (i.e., exp (Vi) Doesn’t make
by the “inverse link"): 1+exp (¥) any sense!

- You can unlogit the model-predicted conditional mean all the way back into
probability to express predicted outcomes, but you can only unlogit the
slopes back into odds ratios (not all the way back to changes in probability)

- Order of operations: build predicted logit outcome, then logit > probability
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“Latent Responses” for Binary Data

- This model is sometimes expressed by calling the logit(y;)

an underlying continuous (“latent”) response of y; instead:

threshold =
intercept o * —1

> Inwhich y; = 1if (y; > threshold), or y; = 0 if (y; < threshold)

0.3

Empty Model: y; = —threshold + e;

»Loglstlcé Dlstrlbytlons — So when predicting y’,

e;~ Logistic(O, ag* = 3.29)

At

S L e o
LI L |
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Logistic Distribution:

2
| _ ‘ | Mean = u, Variance = %52,
o1l | | where s = scale factor that

3 | allows for “over-dispersion”
(must be fixed to 1 for binary

responses for identification)

Image borrowed from:
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https://en.wikipedia.org/wiki/Logistic_distribution

Other Link Functions for Binary Data

- The idea that a “latent” continuous variable underlies an observed
binary response also appears in a “Probit Regression” model:

> A probit link, such that now your model predicts a different transformed y;:
Probit(y; = 1) = @ 1[p(y; = 1)] = linear predictor

@ = standard normal cumulative distribution function, so the link-transformed y;
is the z-value that corresponds to the location on standard normal curve below
which the conditional mean probability is found (i.e., z-value for area to the left)

Requires integration to inverse link from probits to predicted probabilities

> Same Bernoulli distribution for the conditional binary outcomes, in which
residual variance is not separately estimated (so no e; predicting original y;)

= Model scale: Probit can also predict “latent” response: y; = —threshold + e;
2
+  But Probit says e;~ Normal(0, o, = 1.00), whereas logit ;. = = = 3.29
> So given this difference in variance, probit coefficients are on a different

scale than logit coefficients, and so their estimates won't match... however...
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Probit vs. Logit: Should you care! Pry not.

Link-Transformed y; “ 1 Rescale to equate
= .. 2 — linked outcomes:
— s Probit o, = 1.00 R Broais =
|| cao (SD=1) —_ . logit
0 e o Borobit *
> _c-an Logit 2 |17001) R
E o 0' * = 3 29 5 g = 5 P(r)c?tl)sitncw't .
S °* (D=1 8) 3
5 . O o You'd think it would
e o (el
QO oos be 1.8 to rescale,
0.00 = o but it's actually 1.7...
-4 =3 2 - 1 i 3 T T | T |
-

4 <2 0 2 4

Link-Transformed y;

Other fun facts about probit:

> Probit = "ogive” in the Item Response Theory (IRT) world

> Probit has no odds ratios (because it's not based on odds)

> Probit is the only option in IFA models using limited-information estimation!

- Both logit and probit assume symmetry of probability curve, but there
are other asymmetric options as well: (complementary) log- Iog

Left image: exact source now unknown, but | think it was from Don Hedeker
Right image: borrowed from Jonathan Templin
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How IRT/IFA are the same as CFA

- NOW BACK TO YOUR REGULARLY SCHEDULED MEASUREMENT CLASS

- IRT/IFA = confirmatory measurement model in which latent traits are the
model predictors (so you decide which items measure which traits)

> Like CFA, both items and subjects matter because their properties are included
in the measurement model (item difficulty and discrimination; subject F)

> Item discrimination means the same thing in IRT and IFA, but they differ in how
location of the item on the trait is indexed (item “difficulties” versus “thresholds”)

- After controlling for a subject’s latent trait value (F is now called theta, 0),
the item responses should be uncorrelated (also called local independence)

> The ONLY reason item responses are correlated is a (unidimensional) theta

> Otherwise, we CAN fit confirmatory multidimensional factor models instead,
and then responses are independent after controlling for ALL the thetas

> As in CFA, can be violated by other types unaccounted for multidimensionality
or dependency (e.g., “specific” method factors for common stems as “testlets”)

Error covariances must be specified using method factors when using ML estimation
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How IRT/IFA are different from CFA

- IRT/IFA uses the same family of link functions (transformations) as in
generalized models, it's just that the predictor is latent instead of observed

> IRT/IFA = logistic/probit regression instead of linear regression

> Predictor = Latent factor/trait in IRT/IFA = "theta” 0, and its slopes are still
supposed to predict the associations of the item responses, just like in CFA

- IRT/IFA specifies a nonlinear relationship between binary, ordinal, or
nominal item responses and the latent trait (now called “theta” 0)

> Probability is bounded between 0 and 1, so the effect (slope) of theta must be
nonlinear, so it will shut off towards the extremes of theta (as an S-shaped curve)

> Errors cannot have constant variance across theta or be normally distributed

> Full-information estimators use logit (aez*: 3.29) or probit (aez*z 1.00) link
functions, but limited-information estimators only have probit (g2 = 1.00)

Logit = 1.7*Probit, so the predicted probabilities are equivalent either way
Probit in IRT models is called “ogive” (as discussed in Embretson & Reise)
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Nonlinear Prediction by 0 in IRT/IFA

- The relationship between theta and the probability of response=1
is “nonlinear” = a monotonic s-shaped logistic curve whose
shape and location are dictated by the estimated item parameters

> Linear prediction of the logit - nonlinear prediction of probability

1.0

Bo=0 Pt
=B =1 pd 08 //
1.5 — /
e / 06
50 7 | /

515 / = /
S 25 // o2 //
—35 T T T T T T 00 T T T T T T
3 -2 A 0 1 2 3 83 -2 A 0 1 2 3
Subject theta 6 Subject theta 6

- Btw, it may be that other kinds of non-linear relationships could be more
appropriate and thus fit better > These are “non-parametric” IRT models

PSQF 6249: Lecture 5a



ltem Response Theory (IRT) =
Item Factor Analysis (IFA) Models

Mplus can do ALL of these Model form: with Model form: with
model/estimator combinations: discrimination and loadings and

difficulty parameters | threshold parms
Full-information estimation via “IRT” “r
Maximum Likelihood (“Marginal ML") | (Mplus gives only for (Mplus gives
- uses original item responses binary responses) for all models)
Limited-information estimation via “r “IFA”
Weighted Least Squares ("WLSMV") (Mplus gives only for (Mplus gives for
- uses item response summary binary responses) all models)

- CFA assumes normally distributed, continuous item responses, but
"CFA models for categorical responses” = IRT and IFA models

- These different names are used to reflect the combination of how the
model is specified and how it is estimated, but it's the same core model

> Btw, R Lavaan only has limited-information estimation for these models...
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Model Format in IRT and IFA

- Item Factor Analysis (IFA) models look very similar to CFA,
but Item Response Theory (IRT) models look quite different

- Partly due to predicting logits/probits (IFA) vs. probability (IRT):

. i=1
> Logit: Log ’Zi#ﬂli] = Lo+ B1Xxi

. Probability: p(y; = 1) = ﬁiﬁ‘}:ﬁf‘i)

- Partly due to different model parameterizations (stay tuned)

- The IFA and IRT model parameters are just re-arrangements of each
other for common cases, but historically have been estimated
differently (full vs. limited information) and for different purposes

> Mplus provides both kinds of output for binary data, but only
IFA output for categorical data (we will calculate IRT version)

- We’'ll start with IRT for binary responses, then move to IFA...

> |IRT parameterization is (arguably) more useful (and more direct = reliability)
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Simplest IRT Model:
Rasch Model for Binary (0/1) Responses

- Rasch model as originally described (in which @ variance is estimated):

p(yiszl) — 95 _ bi

> Logit: Log [p(y_ ~o)

y;is 1s 0 or 1 response
to item i for subject s

oge gs_bl
> Probability: p(y;;=1) = 1i);z;(95—19)i)

1.7 may go inside exp( ) if
predicting logits so model
parms stay in probit scale

> 0. = subject trait > most likely latent trait score (theta, a random effect)

S

> b;

i

for subject s given their pattern of item responses

“item difficulty” - location on latent trait (estimated as a fixed effect)
(like an intercept, but it's actually “difficulty” now!)

Random = parameter has distribution; Fixed = no distribution

- Probability of y;; = 1 depends on subject trait (theta) vs. item difficulty:
> If trait > difficulty, then logit > 0, and probability > .50
> If difficulty > trait, then logit < 0, and probability < .50
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Fundamentals of IRT

- Back in CTT, scores only have meaning relative to the persons
in the same sample, and thus sample norms are needed to
interpret a person’s score
> "l gota 12. Is that good?”

“Well, that puts you into the 90 percentile.
‘Great!”

> "l gota 12. Is that good?”
“Well, that puts you into the 10% percentile.
"Doh!”

> Same score in both cases, but different reference groups!

- In IRT, the properties of items and subjects are placed along
the same underlying latent continuum= "“conjoint scaling”

> This concept can be illustrated using construct maps that order
both subjects in their trait levels and items in their difficulty/severity...
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A Latent Continuum of Pokemon Knowledge

Subject Trait Side % Item Difficulty Side
(Expert) Hugh

Trait theta 6, has X
meaning based on
the items at that Cass

location: subject
theta = item (Starter) Bladimir

difficulty at which
p(yis =1) =.50

Daddy

X

Mommy

(Novice) Grandma

All images borrowed from The Google

PSQF 6249: Lecture 5a



Norm-Referenced Measurement in CTT

200

In CTT, the abllity level of
Asna  Paul Mary Vers each subject is relative to
the abilities of the rest of
the test sample

Here, we would say that
Anna is functioning
relatively worse than
Paul, Mary, and Vera,
who are each above

average (which is 0)
Std. Dev = 1.00
Moan = -.00
N = 818.00

‘30“ 'ZOW ‘1 -w OIM 1 -w 2-00
-2.50 -1.50 -.50 S50 1.50

FIM Standard Score

Image from Embretson & Reise (2000)
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ltem-Referenced Measurement in IRT

Anna Paul Mary Vera

Each subject’s theta
level reflects the
type of activity they
are predicted to be
able to do on their
own with prob = .50

Given theta, the
model can predict
the probability of
accomplishing each
task (even if not
administered!)

1tem Difficulty

Image from Embretson & Reise (2000)
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Interpretation of Theta Latent Traits

- Theta estimates are ‘'sample-free’ and ‘scale-free’
> Theta estimate does not depend on who else was measured

> Theta estimate does not depend on which items were given

« AFTER calibrating all items to same metric, can get a subject’s location
on latent metric regardless of which particular items were given

- However: although the theta estimate does not depend
on the particular items given, its standard error does

> Extreme thetas without many items of comparable difficulty will
not be estimated that well - large SE (flat likelihood)

> Likewise, items of extreme difficulty without many subjects of
comparable traits will not be estimated that well = large SE
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Another version: The T1PL Model

- The “Rasch” model is a rescaled version of the
One-Parameter Logistic IRT model - “1PL”

> Logit: Log lzg‘ig = a(6s — b;)

oge es_bl,
> Probability: p(y;s =1) = 1?:;251[2(95_19)3)]

In the “Rasch” model, a is
fixed = 1 while theta’s
variance is estimated; in
the 1PL, a is estimated and
theta’s variance is fixed = 1
(and optional 1.7 = probit)

> a = "item discrimination” = relation of item to latent trait = slope of
curve at probability = .50 (at inflection, its max slope) = fixed effect

> The 1-PL model has “a” and not “a,” — that's because a is assumed
constant across items (and thus, the 1 parameter that is estimated
for each item is still difficulty b, as a fixed effect (no distribution)

> If using the probit link function, the predicted outcome is the z-score for
the area to the left under the normal curve for that predicted probability
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1-PL (->Rasch) Model Predictions

Item Characteristic Curves - 1-PL (Rasch) Model

1.0 | — = b, = item difficulty
0.9 —leml location on latent
0g | _eme trait at which
o | Titems probability = .50
0.7 4 —item4 '
N\ . . . .
e a = discrimination
I b,=/-2 b,=/-1 b,=/0 b,=/1 slope at prob = .50,
8 0o (logit = 0, which is
S 04 - point of inflection)
Qo3
' Note: equal a terms
0.2 - means the ICCs will
01 /// never cross = this is
00 g “Specific Objectivity”
3 2 -1 0 1 2 3

Subject Latent Trait (0,)
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Can you guess what’s next!?
2-Parameter Logistic Model (2PL)

- The 1-PL (Rasch) model assumes tau-equivalence - equal discrimination

1 "

- The 2-PL frees this constraint by changing “a” to "a;" (as fixed effects):

o p(yis=1)| _
> Logit: Log [m = a;(6s — b;) Relative to a logit-link model,

parameters from a probit-
link (ogive) model will be

> Probability: p(y;; =1) = 1?;‘)’(;6;;(:9(59:?23)] smaller by a factor of ~1.7

> a; = "item discrimination” = relation of each item to latent trait

l

= slope of curve at probability = .50 (at inflection, its max slope)
> b; is still item difficulty (location where probability = .50)

> Note that a,; is a linear slope for theta 6 predicting the logit of y,,

1
but a nonlinear slope for theta 6 predicting the probability of y,. = 1
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ltem Characteristic Curves: 2PL Model

b; = difficulty = location on latent trait at which p; = .50 (or logit = 0)
a; = discrimination slope at p; = .50 (at the point of curve inflection)

-3 -2

Subject Latent Trait (6)
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0

1

1.0 Note: unequal q,
091 by=-1,a,=.5 —> Curves cross
osd b,=—1a,=1 - violates "Specific
0.7 - b3 = 0, a, =. 5 ObjECtiVity"
~ _ _
o6 Pa= Oa,=1 At Theta 6, = —1:
”h 0.5 ltems 3 and 4 are
0.4 1 harder than 1 and 2
S 03- —> lower prob of 1
0.2 1
o1 At Theta 6, = +2:
0'0 // ltem 1 is now harder

than ltem 4 >
lower prob of 1
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“IRT” vs.“Rasch”

- According to most IRT people, a “Rasch” model is just an IRT model with
item discrimination a; held equal across items (a tau-equivalent model)

>

>

>

>

Rasch = 1-PL where b; item difficulty is the only item parameter
Slope = discrimination a; = strength of relation of item to latent trait theta 6
In Rasch, a = 1 and theta variance = ?7; In 1PL, a = 7 and theta variance = 1

“ltems may not be equally ‘good’, so why not just let their slopes vary?”

- According to strict Rasch believers, the 2PL and rest of IRT are bananas

>

>

Rasch models have specific properties that are lost once you allow the item
curves to cross (by using item-varying a,) > “Loss of Specific Objectivity”
= Under the Rasch model, subjects are ordered the same in terms of predicted
responses regardless of which item difficulty location you're looking at

= Under the Rasch model, items are ordered the same in terms of predicted
responses regardless of what level of subject theta you're looking at

« a; item discrimination represents a theta*item interaction - the item curves
cross, so the ordering of subjects or items is no longer invariant, and this is “bad”

“ltems should not vary in discrimination if you know your construct!”
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1-PL (->Rasch) Model Predictions

Item Characteristic Curves - 1-PL (Rasch) Model

1.0 | — = b, = item difficulty
0.9 —leml location on latent
| T hema trait at which
"2 —items robability = .50
0.7 4 —item4 P y =
Y . . . .
e a = discrimination
I b,=/-2 b,=/-1 b,=/0 b,=/1 slope at prob = .50,
90 (logit = 0, which is
04+ point of inflection)
Qo3
' Note: equal a terms
0.2 - means the ICCs will
0.1 /// never cross > this
g maintains “Specific
o | Objectivity”
3 2 1 0 1 2 3 Rjectivity

Subject Latent Trait (0,)
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2PL IRT vs. TPL IRT (Rasch):
What Goes into Theta

- In Rasch/1PL models, the sum score is a “sufficient statistic” for theta

> For example, given 5 items ordered in difficulty from easiest to hardest,
each of these response patterns where 3/5 are correct would yield the
same estimate of theta:

11100 (mostconsistent)
01110
00111
10101 (??77)
(and so forth)

- In 2PL (logit or probit) models, items with higher discrimination (a,)
count more towards theta (and theta SE will be lower with higher g; items)

> It not only matters how many items you got correct, but which ones

> Rasch believers don't like this idea, because then the ordering of
subjects on latent trait theta is dependent on the item properties
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Yet Another Model for Binary Responses:

>

>

>

>

>

>

>

b;

a;

Ci

3-Parameter Logistic Model (3PL)

expla;(6s — b;)] ]
1 + expla;(6s — b;)]

= item difficulty - still is location (a fixed effect), but not at prob = .50
Higher values - more difficult items (lower probability of a 1)

= item discrimination > still is slope at b; (a fixed effect)

Higher values = more discriminating items = better items at its location

p(yis =1 =lc; + (1 — ¢;)

= item lower asymptote = “guessing” (where c¢; > 0; is a fixed effect)

Lower bound of probability of 1 independent of theta
e.g., would be around .25 given 4 equally guess-able multiple-choice responses

Could estimate a common ¢ across items as an alternative (but is not often done)

Probability starts at guessing c; then depends on theta 6y, a;, and b;

3-PL model is available starting in Mplus 7.4; c; is labeled as $2

Require LOTS of subjects because c; parameters are hard to estimate—you must have
enough low theta subjects to determine what the probability of guessing is likely to be

PSQF 6249: Lecture 5a
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Item Characteristic Curves - 3-PL Model (a=.5)

Top: Items with lower
discrimination (a; =.5)

Below: Items with
higher discrimination
(ai — 1)

Item Characteristic Curves - 3-PL Model (a=1)

-3 2 -1 0 1 2 3

Subject Latent Trait (6)

PSQF 6249: Lecture 5a

2 -1 0 1 2

Subject Latent Trait (6;)

Note that item difficulty b,
values are still at the point
of inflection, but if ¢; > 0,
that's not at prob = .50 2
expected prob at b, is higher
by c, as: prob = (1 +¢;)/2
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One Last Model for Binary Responses:
4-Parameter Logistic Model (4PL)

expla;(6s — b;)] ]
1 + expla; (65 — b;)]

; = item difficulty = location (not at prob = .50)

- a; = item discrimination - slope (at location) | All item parameters
- ¢; = item lower asymptote - “guessing” remain fixed effects

- d; = item upper asymptote - “carelessness” (so d, < 1)
> Maximum probability to be achieved independent of trait (theta ;)
> Could be carelessness or unwillingness to endorse the item no matter what

p(yis =1) =c¢; +|(d; — ¢;)

[~y

- Probability starts at “guessing” c;, tops out at “carelessness” d;,
then in between depends on theta 6, a;, and b,

> 4-PL model in Mplus 7.4 onward; c; and d; are labeled as $2 and $3
> But good luck estimating it! May need to use a common ¢ and d instead
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Anchoring: Model ldentification in IRT

- As in CFA, we have a latent trait (a pretend predictor) without a scale:
so we need to give each theta 6, a mean and a variance

> This is called "anchoring” in IRT - CFA calls it “model identification”
> As in CFA, there are 2 equivalent options: Anchor by Subjects or Anchor by Items

- Anchor by subjects: Fix theta 6, mean = 0 and theta 6, variance = 1
> |s “z-score” (standardized factor) model identification used in CFA
> All item difficulties b, and item discriminations a, are then estimated
> In Rasch model, the common a would be estimated but equal across items

- Anchor by items: Fix one item difficulty b, = 0 and one item a, = 1
> Is "marker item” approach to model identification used in CFA
> Mean and variance of theta 6, are estimated instead

> Fixing mean of item difficulty = 0 is another way (more common in Europe)

- Big picture: as in CFA, the numerical scale doesn’t matter, all that matters
is that subjects and items are on the same scale & “conjoint scaling”
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Information: Reliability in IRT Models

- “Information” = reliability > measurement precision

- In CFA models (continuous y;,), item-specific “information”
is rarely referred to, because standardized loadings cover it:

> How good is my item = how much information is in it?

How much of its variance is “true” (shared with the factor)
relative to how much of its variance is “error”?

Information = unstandardized loading? / error variance

> Note that information is assumed constant across trait values in CFA

= Items with a greater proportion of true variance are better, the end
= So the instrument’s “information function” is FLAT across trait values in CFA

> How do | make my test better?

More items with more information (with stronger factor loadings)
> Sum of information across items = Test information function

= Test information function will also be flat across trait values in CFA

PSQF 6249: Lecture 5a
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ltem Information in CFA Models

Predicted Item Response

O = N W Pk U Oy N 00 WD

-3 -2 -1 0 1 2 3

Factor Score (Mean = 0, Variance = 1)

Factor Model Predicted Item Responses

—a—Pred Y6

—o—Pred Y1

Ve = 5.32 4 0.82(F) + e,
e, = 1.67

Vs = 4.55+ 1.23(F;) + ey,
et = 1.53

Info y, = 0.822 / 1.67 = .401

Info y, = 1.232 /1.53 = .998

Std y., = 3.48 + 0.54(F;) + e,

Std y,, = 2.60 + 0.71(F,) + e,

- CFA has a linear slope (factor loading) - predicts the same increase in
the y,. item response for per unit higher F¢ (all across levels of F;)

- y, has more information than y, (and a higher standardized factor
loading), so y, is better than y,, period(t) (for all possible factor scores)
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Test Information in IRT Models

- IRT test information can be converted to a reliability metric as follows:

> Reliability = information / (information+1)

Information of 4 converts to reliability of .80
information of 9 converts to reliability of .90

This formula comes from classical test theory:
> Reliability = true var / (true var + error var)

> Reliability = 1/ (1 + error var), where error var = 1/info
> Reliability = 1/ 1 + (1/info) 2 info / (info+1)

An analog of overall model-based reliability (e.g., omega) could be formed
by summing reliabilities for each possible theta, weighted by the number
of subjects at each level of theta, but (to me) that's missing the point...

- Because the slopes relating Theta to the probability of an item response
are non-linear, this means that reliability must VARY over theta

> So FOR WHOM is your test sufficiently reliable??
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ltem Information in CFA vs. IRT

Item Characteristic Curves - 2-PL Model Factor Model Predicted Item Responses
1.0
291 oz 9 T~
081 —item3 § 8 /): \
Q 0.7 4 —itemd g 7 "
|| ©6- % g ,l//? CFA Item
9097 % 4 //;/ —=—Pred Y6 -
e R —wen | INfOrmation
Q%3 T 2 .
Z.i: £ é '/ FunCUOnS
0.0 T T T T T -3 -2 -1 0 1 2 3
3 \I l:t (e )l 2 3 Factor Score (Mean = 0, Variance = 1)
rait (6,

IRT Item 12
i T /emy1

Information ,
) [ | \N ltem 3: /

Functions
=0, a=1 /

mati

= o o o
[\ i (o)} (o]
ey
(D
3
N

—

~—t

[

3

<

(o))

If theta variance =1,
then at a given theta value,
binary item information

Infor

=a’*p(y =1) | Z2—p=0,a=5
= a p ylS - e — b—O, a—5 —
— D.O T T T T I T T T I T T T T T T T T I T T T T T T 1
*PUis = 0) SK8XMSL2U8LELS8ERSKELSRRLS
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Effects of ltem Parameters
on ltem Characteristic Curves

ltem 1 2 3 4 5 6 7 8

a discrimination 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0

b difficulty -1.0 -1.0 0.0 0.0 1.0 1.0 2.0 2.0
ltem Characteristic Curves An important result of

the non-linear slopes in
an IRT model is that the
slope stops working
(so reliability decreases)
as you move away from
the item difficulty
location.

In the CFA model with
linear slopes, the slope
N N N | | | never stops working
3 2 1 0 1 2 3 | (at least in theory).
Subject Latent Trait (0,)
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Effects of ltem Parameters
on ltem Information Curves

Iltem 1 2 3 4 5 6 7 8
a discrimination 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0
b difficulty -1.0 -1.0 0.0 0.0 1.0 1.0 2.0 2.0

ltem Information Functions

1.0
R -~ !nform.atl.on (reliability)
0.8 | —item2 IS maximized around

the item difficulty
location.

Information

Items with greater g,
item discrimination
values have greater
absolute information.

-3 j2 -;_ (;l Z;_ é 3
Subject Latent Trait (0;)
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Test Information (and SE) by Theta

If you sum all the item
_ information curves, you get
JTest Info a test information curve
that describes how reliable
your set of items is over the
range of the trait (Theta).

— Test Information 1

SE(8)

— Standard Error

Test Information is very
useful to know—it can tell
you where the holes are

In your measurement

- precision, it and guides you
3 In adding/removing items.

Info(e) and SE(0)

-3 -2 -1 0 1 2
Trait (0)

There is no single “ideal” test information function—only what is
optimal for your purposes of measurement. Here are a few examples....

PSQF 6249: Lecture 5a
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Another Example of (Not-So-Good)

But test
info only
gets up
to ~2...

(Uh oh!)

Information

2.0
1.8 //—\\
1.6 g \
1.4
1o || The goal of this test was \
to identify subjects with \
10 11 deficits in the latent trait. \
08 11 Hence, it is most useful to \
06 | | have test information : :
maximized over the I SUbJeCtS. are h!gh
0477 lower range of theta. {enough’) in ability,
05 it doe;n t matter
how high.
2.0 -+-oon----  n4+-=--\-0+=n nyx =-————1r—""————————————————————

Test Information

-30 -25 -20 -15 -10 -05 00 0.5 1.0 1.5 2.0 2.5 3.0

Person Ability

Image from my dissertation (the “done” kind)!
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Other Shapes of Test Information

- If the goal is to measure a trait across subjects equally well, and you expect
people to be normally distributed, then your best bet is to create a test
with information highest in the middle (where most people are likely to be)

- If your goal is to identify individuals below or above a cut-point, however,
your test information function should ideally look more like this:

> Want to maximize sensitivity near
the cut-point region, and not waste Test
time measuring people well who are Info
far away from the cut-point

> If classifying subjects is the goal of ——
measurement, however, you might

be better off with a different family

, , , < Theta 2 cut-point
of latent trait models in which Theta

is already a categorical "attribute” instead: Authors |

Diagnostic Classification Models, as covered  according to & e >

by the book Diagnostic Measurement ... The Google: o Robert Henson ,
9 ’
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How to Improve Your Reliability

- In CTT, because item properties are not part of the model,
items are seen as exchangeable, and more items is better

> Thus, any new item is equally better for the model

- In CFA and IRT, more items is still better...

> In CFA, the question is “how much better”?

= This depends on the standardized loading; intercepts are not important

= Specifies a linear relationship between theta and the item responses,
so “for whom” isn't relevant—a better item is better for everyone equally

> In IRT, the question is “how much better, and for whom?”

Depends on the discrimination (a; slope) and the difficulty (b; location),
respectively (difficulties are important, and are always estimated)

Because of the nonlinear relationship between theta and the item
responses, items are only useful for thetas in the middle of their S-curves
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Effects of ltem Parameters
on ltem Information Curves

ltem 1 2 3 4 5 6 7 8
a discrimination 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0
b difficulty -1.0 -1.0 0.0 0.0 1.0 1.0 2.0 2.0

Item Information Functions

1.0
0.9 1 Content aside, items with In addition to q;

—item1l

0.8 | — item2 higher a; will be more useful item discrimination,
though, you want to

make sure you are
covering the range
of difficulty where
you want to measure
your subjects best.

Information

-3 -é -;I_ (; Z;_ é 3
Subject Latent Trait (0;)
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IRT and Adaptive Testing:
Fewer Items Can Actually Be Better

- In a normal distribution of the
latent trait and a comparable
distribution of item difficulty,
extreme subjects are usually
measured less well
(higher SE).

- For fixed-item tests, more
items is generally better,
but one can get the same
precision of measurement with
fewer items by using adaptive
tests with items of targeted
levels of difficulty. Different
forms across subjects are
given to maximize efficiency. Trait Level

Fixed 20 items

Fixed 20 items 3()

Standard Error of Measurement

B Adaptive 20 Items

@ Adaptive 30 items

Image from Embretson & Reise (2000)
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IRT (and CFA) Help Measure Change AND
Maintain Sensitivity across Samples

- Theta is scaled and interpreted relative to the items, not relative
to the other persons in the sample (in 2PL, is item difficulty at prob = .50)

> This means you can give different forms over time and still compare thetas
> MUST have some “linking items” - common set of items across occasions

> Although this property is helpful when dealing with “accidental”
alternative forms (e.g., changed response options, dropped items),
linking items can be used advantageously as well

> Here, we grow a test over time within a sample
(i.e., using “vertical equating/scaling”): 4567 809

Latent Trait Time 3

34567
T T T 1

123 456
‘ ‘ ‘ ‘ ‘ Latent Trait Time 2

Latent Trait Time 1
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SF-36

About 3% of £
US Medicare

managed care

Combining Measures Increases the Range
& Lowers the Physical Function “Floor”

[H

ij Trouble bending, stooping

I Need help to bathe

beneficiaries

Note: ADL = activities of daily living

Vigorous activities
Moderate activities

Moderate activities

c o Togotes boot

Move about with heip

AD L%( |

1!-minuh ADL assessment
moves 96% of elderly '
off of the “floor”

Stand up with help

Source: Health Assessment Lab (MAL)

Example: Items from Many Forms Define
the Physical Functioning ( “Ruler”)

Vigorous activities
Vigorous activities with limitations
Moderate activities

Moderate activilies with limitations

Walk slowly
Trouble bending, stooping

Need help (o bathe

Cannot maintain balance

Move about with help
Stand up with help
Staying in bed/partly undressed

Lying down most of time

Confined to room, bed

PSQF 6249: Lecture 5a

Linking Thetas
across Tests

SF-36: measure of higher
physical functioning

ADL: measure of lower
physical functioning

So don’t choose: Administer a
core set of linking items from
both tests to a single sample

Linking items then form a
common metric
— More precision than single test

— Allows for comparisons across
groups or studies

See Mungas & Reed (2000) for an
example of linking over forms
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Another Benefit of IRT (and CFA)

- IRT: If the model fits, the scale of theta is linear/interval
> Supports mathematical operations that assume interval measurement

> Same ordering of subjects as in raw scores, but the distances between
subjects may be different, especially at the ends (due to less reliability)

- CTT: Sum scores have an ordinal relationship to the latent
trait at best

> Does not support operations that assume interval measurement,
which can bias tests of mean differences, regression slopes, etc.

> Spurious interactions can result in tests of mean differences if groups
differ in how well they are measured (i.e., floor and ceiling effects)

- Bottom line: Measurement matters for testing everyday hypotheses,
NOT just when fitting measurement models for specific issues

PSQF 6249: Lecture 5a
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Example from Mungas & Reed (2000)

Test Curve for MMSE Total

IA5

20

| A5

15

Total Score

10

A2SD

A.SISE.

The bottom and top of the
MMSE total score (ordinal)
are “squished” relative to the
latent trait scale (interval).

This means that one-unit
changes along the MMSE
total do not really have the
same meaning across the
latent trait, which makes
many kinds of comparisons
problematic.

-3.0
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2.0 -1.0 0.0 1.0 2.0

Interval Theta
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Example from Mungas & Reed (2000)

Right: They combined 3 tests to
get better measurement, as
shown in the test curve 2 |

Below: Items at each trait location
contribute to scale’s capacity to
differentiate persons in ability at 7

each point in the continuum.

0.20 —

0,10+

8,
: There is a hole near the
N ] top, whlch explains the
flattening of the curve
(less information there).
0 - : |
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.0 0.5 1.0 1.5 2.0 2.5
=3 o o s} ta o to to o to to o
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.8 1.0 1.8 2.0 a5 3.0

Ability Range
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IRT and IFA Part 1: Summary

- CFA models use >1 latent factors to predict continuous
item responses (as in linear regression)

- IFA/IRT models use >1 latent factors to predict categorical
item responses (as in binary, ordinal, or nominal regression)
> |IFA models will look more like CFA models — stay tuned for Part 2!

> IRT models look strange, but their b location parameters are (arguably)
more useful than the IFA versions (which is why | start with IRT)

At a minimum, items differ in b = trait location (as difficulty/severity) 2 1PL or Rasch
Could also allow different a discrimination (as max slope) across items > 2PL
Could also allow different ¢ lower or d upper asymptotes - 3PL or 4PL

- Because latent traits (factors, variables, now called theta 0)
have a nonlinear relation to the probability of a response:

> Items are most useful for trait levels at their b location parameter

> Reliability (as “test information”) must vary over the latent trait, because
it depends on how many (and how good) items you have at each location!
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