
Latent Trait Measurement 

Models for Binary Responses: 

Part 1
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• Topics:

➢ The Big Picture of Latent Trait Measurement Models

➢ Review of Regression Models for Binary Outcomes

➢ 1, 2, 3, and 4 Parameter IRT (and Rasch) Models

➢ Item and Test Information (for Indexing Reliability)



Reviewing the Big Picture… of CTT

• CTT predicts the total: Ytotals = TrueScores + errors

➢ Items are assumed exchangeable because their properties are not 

part of the model for creating a latent trait estimate (as total)

➢ Because the sum score serves AS the latent trait estimate, it 

can be problematic to make comparisons across different forms

▪ Item difficulty = mean of item (is sample-dependent)

▪ Item discrimination = item–remainder correlation (is sample-dependent)

➢ Estimates of reliability assume (without testing) unidimensionality; 

also tau-equivalence (alpha) or parallel items (Spearman-Brown)

▪ Measurement error is (most often) assumed constant across the trait

• How do you make your instrument better?

➢ Get more items. What kind of items? More.
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Reviewing the Big Picture… of CFA
• CFA predicts the ITEM response: 𝒚𝒊𝒔 = 𝝁𝒊 + 𝝀𝒊𝑭𝒔 + 𝒆𝒊𝒔

➢ Linear regression relating continuous item response to latent predictor 𝑭𝒔

➢ Both items AND subjects matter in predicting item responses

▪ Item difficulty = intercept 𝝁𝒊 (in theory, sample independent)

▪ Item discrimination = factor loading 𝝀𝒊 (in theory, sample independent)

➢ The goal of the factors is to recreate the observed covariances among items, so 

factors represent testable assumptions about the pattern of item covariance

▪ Responses should be unrelated after controlling for factors → local independence

▪ But if not, error covariances could be used to capture unexpected multidimensionality!

• Because individual item responses are included:

➢ Items can vary in discrimination (→ Omega sum score reliability) and difficulty 

➢ To make your instrument better, you need MORE and BETTER items…

▪ With higher standardized factor loadings → with greater information = 𝝀𝒊
𝟐 / Var(𝒆𝒊)

• Measurement error is still assumed constant across the latent trait (one value)
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From CFA to IRT and IFA

Outcome Type →

Model Family Name

Observed 

Predictor 𝒙𝒊

Latent 

Predictor 𝒙𝒊

Continuous outcomes →

“General Linear Model”

“Linear” 

Regression

Confirmatory 

Factor Models

Discrete/categorical outcomes →

“Generalized Linear Model”

Logistic/Probit/

Multinomial

Regression

Item Response 

Theory and Item 

Factor Analysis
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• Basis of Item Response Theory (IRT) and Item Factor 

Analysis (IFA) lies in models for discrete outcomes, 

which are called “generalized” linear models

• Thus, IRT and IFA will be easier to understand after 

reviewing concepts from generalized linear models…

➢ For more, see Lecture 2 and Examples 2a and 2b from this class

https://www.lesahoffman.com/PSQF6270/index.html


3 Parts of Generalized Linear Models
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=A. Link 

Function

C. Actual 

Data

B. Same Linear 

Predictive Model

A. Link Function: Transformation of conditional mean to keep 

predicted outcomes within the bounds of the outcome

B. Same Linear Model: How the model linearly predicts 

the link-transformed conditional mean of the outcome

C. Conditional Distribution: How the outcome could be 

distributed given the possible values of the outcome

Generalized linear models work for many kinds of outcomes…



Here’s how it works for binary outcomes
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• Let’s say we have a single binary (0 or 1) outcome…𝑦𝑖 (i=person)

• The mean of a binary outcome is the proportion of 1 values

➢ So given each person’s predictor values, the model tries to predict 

the conditional mean: the probability of having a 1: 𝒑(𝒚𝒊 = 𝟏)

▪ The conditional mean has more possible values than the outcome!

➢ General linear model: 𝒑(𝒚𝒊 = 𝟏) = 𝜷𝟎 + 𝜷𝟏(𝒙𝒊) + 𝒆𝒊

▪ 𝜷𝟎 = expected probability of 𝒚𝒊 = 𝟏 when all predictors = 0

▪ 𝜷𝟏 = expected change in 𝒑(𝒚𝒊 = 𝟏) for per unit change in 𝒙𝒊

▪ 𝒆𝒊 = difference between observed minus predicted binary values

➢ Model becomes 𝒚𝒊 = (𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐨𝐟 𝟏) + 𝒆𝒊

➢ What could possibly go wrong???



Normal GLM for Binary Outcomes?
• Problem #1: A linear relationship between 𝑥𝑖 and 𝑦𝑖??? 

• Probability of a 1 is bounded between 0 and 1, but predicted 

probabilities from a linear model aren’t going to be bounded 

• Linear relationship needs to shut off → made nonlinear
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We have this… But we need this…
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Generalized Models for Binary Outcomes
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• Solution to #1: Rather than predicting 𝒑(𝒚𝒊 = 𝟏) directly, the model 
transforms it into an unbounded variable using a link function:

➢ Transform probability into odds: 
𝑝𝑖

1−𝑝𝑖
=

prob 𝑦𝑖=1

prob(𝑦𝑖=0)

▪ If 𝑝 𝑦𝑖 = 1 = .7 then Odds(1) = 2.33; Odds(0) = 0.429

▪ But odds scale is skewed, asymmetric, and ranges 0 to +∞ → Not a good outcome!

➢ Take natural log of odds → called “logit” link:  𝐋𝐨𝐠
𝒑𝒊

𝟏−𝒑𝒊

▪ If 𝑝 𝑦𝑖 = 1 = .7, then Logit(1) = 0.846; Logit(0) = −0.846

▪ Logit scale is now symmetric about 0, range is ±∞ → Now a good outcome to predict!

Probability

→ “data 

scale”

Logit

→ “model  

scale”

0.99 4.6

0.90 2.2

0.50 0.0

0.10 −2.2



Solution to #1:  Probability to Logits

• A Logit link is a nonlinear transformation of probability:

➢ Equal intervals in logits are NOT equal intervals of probability

➢ Logits range from ±∞ and are symmetric about prob = .5 (→ logit = 0)

➢ Now we can use a linear model → The model will linearly predict the 

expected logit, which translates into a nonlinear prediction of probability 

→ the outcome conditional mean (probability) shuts off at 0 or 1 as needed

Probability: 

𝒑𝒊 = 𝒑(𝒚𝒊 = 𝟏)

Logit

(log odds):

𝐋𝐨𝐠
𝒑𝒊

𝟏 − 𝒑𝒊

Zero-point on 

each scale:

Prob = .5

Odds = 1

Logit = 0

Image borrowed from Figure 17.3 of: Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: 

An introduction to basic and advanced multilevel modeling (2nd ed.). Sage.
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Odds:
𝒑𝒊

𝟏−𝒑𝒊



Normal GLM for Binary Outcomes?
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Mean (𝑝𝑖)

Variance

Mean and Variance of a Binary Variable

• General linear model:  𝒑(𝒚𝒊 = 𝟏) = 𝜷𝟎 + 𝜷𝟏(𝒙𝒊) + 𝒆𝒊

• If 𝒚𝒊 is binary, then 𝒆𝒊 can only be 2 things:  𝒆𝒊 = 𝒚𝒊 − ෝ𝒚𝒊

➢ If 𝒚𝒊 = 0 then 𝒆𝒊 = (0 − predicted probability)

➢ If 𝒚𝒊 = 1 then 𝒆𝒊 = (1 − predicted probability)

• Problem #2a: So the residuals can’t be normally distributed

• Problem #2b: The residual variance can’t be constant over ෝ𝒚𝒊
as in GLM because the mean and variance are dependent

➢ Variance of binary variable: 𝑽𝒂𝒓 𝒚𝒊 = 𝒑𝒊 ∗ (𝟏 − 𝒑𝒊)



Solution to #2:  Bernoulli Distribution
• Rather than using a normal conditional distribution for the 

outcome, we will use a Bernoulli conditional distribution

Top image borrowed from: https://en.wikipedia.org/wiki/Normal_distribution 

Bottom image borrowed from: https://www.boost.org/doc/libs/1_70_0/libs/math/doc/html/math_toolkit/dist_ref/dists/bernoulli_dist.html
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• Logit:  𝐋𝐨𝐠
𝒑(𝒚𝒊=𝟏)

𝒑(𝒚𝒊=𝟎)
= 𝜷𝟎 + 𝜷𝟏(𝒙𝒊)

➢ Predictor effects are linear and additive like in regular regression, 
but 𝜷 fixed effects describe changes to predicted logit

• Odds:  
𝒑(𝒚𝒊=𝟏)

𝒑(𝒚𝒊=𝟎)
= 𝐞𝐱𝐩 𝜷𝟎 + 𝜷𝟏𝒙𝒊

• Probability:     𝒑 𝒚𝒊 = 𝟏 =
𝐞𝐱𝐩 𝜷

𝟎
+𝜷

𝟏
𝒙

𝒊

𝟏+𝐞𝐱𝐩 𝜷
𝟎
+𝜷

𝟏
𝒙

𝒊

or equivalently   𝒑 𝒚𝒊 = 𝟏 =
𝟏

𝟏+𝐞𝐱𝐩 −𝟏(𝜷
𝟎
+𝜷

𝟏
𝒙

𝒊
)

• Is “logistic regression” when using an observed 𝒙𝒊 predictor; 
Is IRT/IFA when using a latent factor as the 𝒙𝒊 predictor

• Foreshadowing: IRT models are usually described using the 
probability formula, whereas IFA models use the logit formula

Predicted Binary Outcomes
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𝐠(⋅) link

𝐠−𝟏(⋅) 

inverse 

link



Converting Across the 3 Scales

• e.g., for 𝐋𝐨𝐠
𝒑(𝒚𝒊=𝟏)

𝒑(𝒚𝒊=𝟎)
= ෝ𝒚𝒊 = 𝜷𝟎 + 𝜷𝟏(𝒙𝒊)

• You can unlogit the model-predicted conditional mean all the way back into 
probability to express predicted outcomes, but you can only unlogit the 
slopes back into odds ratios (not all the way back to changes in probability)

• Order of operations: build predicted logit outcome, then logit → probability

13    

Direction Conditional

Mean

Slope 

for 𝒙𝐢

Predicted logit outcome

(i.e., given by “the link”):
ෝ𝒚𝒊 𝜷𝟏

From logits to odds (or odds

ratios for effect sizes):

Odds: 

𝐞𝐱𝐩(ෝ𝒚𝒊)
Odds ratio:

𝐞𝐱𝐩(𝜷𝟏)

From logits to probability (i.e., 

by the “inverse link”):

𝐞𝐱𝐩 (෡𝒚𝒊)

𝟏 + 𝐞𝐱𝐩 (ෝ𝒚𝒊)

Doesn’t make 

any sense!
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“Latent Responses” for Binary Data

So when predicting 𝒚𝒊
∗, 

𝒆𝒊
∗~ Logistic 0, 𝝈𝒆∗

𝟐 =  3.29

Logistic Distribution:

Mean = 𝜇, Variance = 
𝝅𝟐

𝟑
𝑠2, 

where 𝑠 = scale factor that 

allows for “over-dispersion” 

(must be fixed to 1 for binary 

responses for identification)

Logistic Distributions

Image borrowed from: https://en.wikipedia.org/wiki/Logistic_distribution
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• This model is sometimes expressed by calling the logit(𝒚𝒊) 

an underlying continuous (“latent”) response of 𝒚𝒊
∗ instead:

       

       Empty Model: 𝒚𝒊
∗ = −𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 + 𝒆𝒊

∗

➢ In which 𝒚𝒊 = 𝟏 if 𝑦𝑖
∗ > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , or 𝒚𝒊 = 𝟎 if 𝑦𝑖

∗ ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 =
𝒊𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 𝜷𝟎 ∗ −𝟏 

https://en.wikipedia.org/wiki/Logistic_distribution


• The idea that a “latent” continuous variable underlies an observed 

binary response also appears in a “Probit Regression” model:

➢ A probit link, such that now your model predicts a different transformed 𝒚𝒊: 

Probit 𝑦𝑖 = 1 = Φ−1[𝑝 𝑦𝑖 = 1 ] = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

▪ Φ = standard normal cumulative distribution function, so the link-transformed 𝒚𝒊

is the z-value that corresponds to the location on standard normal curve below

which the conditional mean probability is found (i.e., z-value for area to the left)

▪ Requires integration to inverse link from probits to predicted probabilities

➢ Same Bernoulli distribution for the conditional binary outcomes, in which 

residual variance is not separately estimated (so no 𝑒𝑖 predicting original 𝑦𝑖)

▪ Model scale: Probit can also predict “latent” response:   𝒚𝒊
∗ = −𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 + 𝒆𝒊

∗

▪ But Probit says 𝒆𝒊
∗~ 𝑵𝒐𝒓𝒎𝒂𝒍 𝟎, 𝝈𝒆∗

𝟐 = 1.00 , whereas logit 𝝈𝒆∗
𝟐 =

𝝅𝟐

𝟑
= 3.29

➢ So given this difference in variance, probit coefficients are on a different 

scale than logit coefficients, and so their estimates won’t match… however…

Other Link Functions for Binary Data

𝐠(⋅) link
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Probit vs. Logit: Should you care? Pry not.

• Other fun facts about probit:

➢ Probit = “ogive” in the Item Response Theory (IRT) world

➢ Probit has no odds ratios (because it’s not based on odds)

➢ Probit is the only option in IFA models using limited-information estimation!

• Both logit and probit assume symmetry of probability curve, but there 
are other asymmetric options as well: (complementary) log-log

Probit 𝝈𝒆∗
𝟐 = 1.00

(SD=1)

Logit 

𝝈𝒆∗
𝟐 = 3.29

(SD=1.8)
You’d think it would 

be 1.8 to rescale, 

but it’s actually 1.7…

𝑦𝑖 = 0

Threshold
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b
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 𝑦

𝑖
=

1

𝑦𝑖 = 1

Link-Transformed 𝑦𝑖
∗ 

Link-Transformed 𝑦𝑖
∗ 
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Left image: exact source now unknown, but I think it was from Don Hedeker

Right image: borrowed from Jonathan Templin
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Rescale to equate 

linked outcomes: 

𝜷𝒍𝒐𝒈𝒊𝒕 =

𝜷𝒑𝒓𝒐𝒃𝒊𝒕 ∗

𝟏. 𝟕(. 𝟎𝟏)



How IRT/IFA are the same as CFA
• NOW BACK TO YOUR REGULARLY SCHEDULED MEASUREMENT CLASS

• IRT/IFA = confirmatory measurement model in which latent traits are the 

model predictors (so you decide which items measure which traits)

➢ Like CFA, both items and subjects matter because their properties are included 

in the measurement model (item difficulty and discrimination; subject 𝐹)

➢ Item discrimination means the same thing in IRT and IFA, but they differ in how 

location of the item on the trait is indexed (item “difficulties” versus “thresholds”)

• After controlling for a subject’s latent trait value (𝑭 is now called theta, θ), 

the item responses should be uncorrelated (also called local independence)

➢ The ONLY reason item responses are correlated is a (unidimensional) theta

➢ Otherwise, we CAN fit confirmatory multidimensional factor models instead, 

and then responses are independent after controlling for ALL the thetas

➢ As in CFA, can be violated by other types unaccounted for multidimensionality 

or dependency (e.g., “specific” method factors for common stems as “testlets”)

▪ Error covariances must be specified using method factors when using ML estimation
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How IRT/IFA are different from CFA
• IRT/IFA uses the same family of link functions (transformations) as in 

generalized models, it’s just that the predictor is latent instead of observed

➢ IRT/IFA = logistic/probit regression instead of linear regression

➢ Predictor = Latent factor/trait in IRT/IFA = “theta” θ, and its slopes are still 

supposed to predict the associations of the item responses, just like in CFA

• IRT/IFA specifies a nonlinear relationship between binary, ordinal, or 

nominal item responses and the latent trait (now called “theta” θ)

➢ Probability is bounded between 0 and 1, so the effect (slope) of theta must be 

nonlinear, so it will shut off towards the extremes of theta (as an S-shaped curve)

➢ Errors cannot have constant variance across theta or be normally distributed

➢ Full-information estimators use logit (𝜎𝑒∗
2 = 3.29) or probit (𝜎𝑒∗

2 = 1.00) link 

functions, but limited-information estimators only have probit (𝜎𝑒∗
2 = 1.00) 

▪ Logit = 1.7*Probit, so the predicted probabilities are equivalent either way

▪ Probit in IRT models is called “ogive” (as discussed in Embretson & Reise)
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Nonlinear Prediction by θ in IRT/IFA
• The relationship between theta and the probability of response=1 

is “nonlinear” → a monotonic s-shaped logistic curve whose 

shape and location are dictated by the estimated item parameters

➢ Linear prediction of the logit → nonlinear prediction of probability

• Btw, it may be that other kinds of non-linear relationships could be more 

appropriate and thus fit better → These are “non-parametric” IRT models

β0 = 0 
β1 = 1
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Item Response Theory (IRT) = 

Item Factor Analysis (IFA) Models
Mplus can do ALL of these 

model/estimator combinations:

Model form: with 

discrimination and 

difficulty parameters

Model form: with 

loadings and 

threshold parms

Full-information estimation via 

Maximum Likelihood (“Marginal ML”) 

→ uses original item responses

“IRT”

(Mplus gives only for 

binary responses)

“?”

(Mplus gives 

for all models) 

Limited-information estimation via 

Weighted Least Squares (“WLSMV”) 

→ uses item response summary

“?”

(Mplus gives only for 

binary responses)

“IFA”

(Mplus gives for 

all models) 

• CFA assumes normally distributed, continuous item responses, but 

“CFA models for categorical responses” = IRT and IFA models

• These different names are used to reflect the combination of how the 

model is specified and how it is estimated, but it’s the same core model

➢ Btw, R Lavaan only has limited-information estimation for these models…
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Model Format in IRT and IFA
• Item Factor Analysis (IFA) models look very similar to CFA, 

but Item Response Theory (IRT) models look quite different 

• Partly due to predicting logits/probits (IFA) vs. probability (IRT):

➢ Logit:  𝐋𝐨𝐠
𝒑(𝒚𝒊=𝟏)

𝒑(𝒚𝒊=𝟎)
= 𝜷𝟎 + 𝜷𝟏𝒙𝒊

➢ Probability:  𝒑 𝒚𝒊 = 𝟏 =
𝐞𝐱𝐩 𝜷

𝟎
+𝜷

𝟏
𝒙

𝒊

𝟏+𝐞𝐱𝐩 𝜷
𝟎
+𝜷

𝟏
𝒙

𝒊

• Partly due to different model parameterizations (stay tuned)

• The IFA and IRT model parameters are just re-arrangements of each 

other for common cases, but historically have been estimated 

differently (full vs. limited information) and for different purposes 

➢ Mplus provides both kinds of output for binary data, but only 

IFA output for categorical data (we will calculate IRT version)

• We’ll start with IRT for binary responses, then move to IFA…

➢ IRT parameterization is (arguably) more useful (and more direct → reliability)

PSQF 6249: Lecture 5a 21    



Simplest IRT Model:
Rasch Model for Binary (0/1) Responses

• Rasch model as originally described (in which 𝜽 variance is estimated):

➢ Logit:   Log
𝑝(𝑦𝑖𝑠=1)

𝑝(𝑦𝑖𝑠=0)
= 𝜃𝑠 − 𝑏𝑖

➢ Probability:    𝑝 𝑦𝑖𝑠 = 1 =
exp 𝜃𝑠−𝑏𝑖

1+exp 𝜃𝑠−𝑏𝑖

➢ 𝜽𝒔 = subject trait → most likely latent trait score (theta, a random effect) 
for subject s given their pattern of item responses

➢ 𝒃𝒊 = “item difficulty” → location on latent trait (estimated as a fixed effect)
(like an intercept, but it’s actually “difficulty” now!)

• Probability of 𝑦𝑖𝑠 = 1 depends on subject trait (theta) vs. item difficulty:

➢ If trait > difficulty, then logit > 0, and probability > .50

➢ If difficulty > trait, then logit < 0, and probability < .50
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𝑦𝑖𝑠 is 0 or 1 response 

to item 𝑖 for subject 𝑠

Random = parameter has distribution; Fixed = no distribution

1.7 may go inside exp( ) if 

predicting logits so model 

parms stay in probit scale



Fundamentals of IRT
• Back in CTT, scores only have meaning relative to the persons 

in the same sample, and thus sample norms are needed to 

interpret a person’s score

➢ “I got a 12. Is that good?”

“Well, that puts you into the 90th percentile.”

“Great!”

➢ “I got a 12. Is that good?”

“Well, that puts you into the 10th percentile.”

“Doh!”

➢ Same score in both cases, but different reference groups!

• In IRT, the properties of items and subjects are placed along 

the same underlying latent continuum= “conjoint scaling”

➢ This concept can be illustrated using construct maps that order 

both subjects in their trait levels and items in their difficulty/severity…
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A Latent Continuum of Pokémon Knowledge

All images borrowed from The Google
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Subject Trait Side

(Expert) Hugh

X

Cass

(Starter) Bladimir

Daddy

X

Mommy

(Novice) Grandma

Item Difficulty Side

Trait theta 𝜃𝑠 has 

meaning based on 

the items at that 

location: subject 

theta = item 

difficulty at which 

𝑝 𝑦𝑖𝑠 = 1 = .50



Norm-Referenced Measurement in CTT

In CTT, the ability level of 

each subject is relative to 

the abilities of the rest of 

the test sample

Here, we would say that 

Anna is functioning 

relatively worse than 

Paul, Mary, and Vera, 

who are each above 

average (which is 0)
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Item-Referenced Measurement in IRT

Each subject’s theta 

level reflects the 

type of activity they 

are predicted to be 

able to do on their 

own with prob = .50

Given theta, the 

model can predict 

the probability of 

accomplishing each 

task (even if not 

administered!)
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Image from Embretson & Reise (2000)
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Interpretation of Theta Latent Traits
• Theta estimates are ‘sample-free’ and ‘scale-free’

➢ Theta estimate does not depend on who else was measured

➢ Theta estimate does not depend on which items were given

▪ AFTER calibrating all items to same metric, can get a subject’s location 

on latent metric regardless of which particular items were given

• However: although the theta estimate does not depend 

on the particular items given, its standard error does

➢ Extreme thetas without many items of comparable difficulty will 

not be estimated that well → large SE (flat likelihood)

➢ Likewise, items of extreme difficulty without many subjects of 

comparable traits will not be estimated that well → large SE
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Another version: The 1PL Model

• The “Rasch” model is a rescaled version of the 

One-Parameter Logistic IRT model → “1PL”

➢ Logit:  Log
𝑝(𝑦𝑖𝑠=1)

𝑝(𝑦𝑖𝑠=0)
= 𝑎 𝜃𝑠 − 𝑏𝑖

➢ Probability:  𝑝 𝑦𝑖𝑠 = 1 =
exp 𝑎(𝜃𝑠−𝑏𝑖)

1+exp 𝑎(𝜃𝑠−𝑏𝑖)

➢ 𝒂 = “item discrimination” = relation of item to latent trait = slope of 

curve at probability = .50 (at inflection, its max slope) = fixed effect

➢ The 1-PL model has “𝒂” and not “𝒂𝒊” – that’s because 𝒂 is assumed 

constant across items (and thus, the 1 parameter that is estimated 

for each item is still difficulty 𝒃𝒊 as a fixed effect (no distribution)

➢ If using the probit link function, the predicted outcome is the z-score for 

the area to the left under the normal curve for that predicted probability

In the “Rasch” model, 𝑎 is 

fixed = 1 while theta’s 

variance is estimated; in 

the 1PL, 𝑎 is estimated and 

theta’s variance is fixed = 1

(and optional 1.7 → probit)
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1-PL (→Rasch) Model Predictions

Item Characteristic Curves - 1-PL (Rasch) Model
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𝒃𝟏 = −𝟐 𝒃𝟐 = −𝟏 𝒃𝟑 = 𝟎 𝒃𝟒 = +𝟏

𝒃𝒊 = item difficulty

location on latent 

trait at which

probability = .50

𝒂 = discrimination

slope at prob = .50, 

(logit = 0, which is 

point of inflection)

Note: equal 𝒂 terms 

means the ICCs will 

never cross → this is 

“Specific Objectivity”
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Can you guess what’s next?

2-Parameter Logistic Model (2PL)
• The 1-PL (Rasch) model assumes tau-equivalence → equal discrimination

• The 2-PL frees this constraint by changing “𝒂” to “𝒂𝒊” (as fixed effects):

➢ Logit: Log
𝑝(𝑦𝑖𝑠=1)

𝑝(𝑦𝑖𝑠=0)
= 𝑎𝑖 𝜃𝑠 − 𝑏𝑖

➢ Probability:  𝑝 𝑦𝑖𝑠 = 1 =
exp 𝑎𝑖(𝜃𝑠−𝑏𝑖)

1+exp 𝑎𝑖(𝜃𝑠−𝑏𝑖)

➢ 𝒂𝒊 = “item discrimination” = relation of each item to latent trait 
= slope of curve at probability = .50 (at inflection, its max slope)

➢ 𝒃𝒊 is still item difficulty (location where probability = .50)

➢ Note that 𝒂𝒊 is a linear slope for theta 𝜃 predicting the logit of 𝒚𝒊𝒔 = 𝟏
but a nonlinear slope for theta 𝜃 predicting the probability of 𝒚𝒊𝒔 = 𝟏
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Item Characteristic Curves - 2-PL Model
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Item Characteristic Curves: 2PL Model

Note: unequal 𝒂𝒊 

→ curves cross 

→ violates “Specific 

     Objectivity”

At Theta 𝜽𝒔 = −𝟏:

Items 3 and 4 are 

harder than 1 and 2 

→ lower prob of 1

At Theta 𝜽𝒔 = +𝟐:

Item 1 is now harder 

than Item 4 → 

lower prob of 1

𝒃𝟏 = −𝟏, 𝒂𝟏 = . 𝟓

𝒃𝟐 = −𝟏, 𝒂𝟐 = 𝟏

𝒃𝟑 =  𝟎, 𝒂𝟑 = . 𝟓

𝒃𝟒 =  𝟎, 𝒂𝟒 = 𝟏

𝒃𝒊 = difficulty = location on latent trait at which 𝑝𝑖 = .50 (or logit = 0)

𝒂𝒊 = discrimination slope at 𝑝𝑖 = .50 (at the point of curve inflection)
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“IRT” vs. “Rasch”
• According to most IRT people, a “Rasch” model is just an IRT model with 

item discrimination 𝒂𝒊 held equal across items (a tau-equivalent model)

➢ Rasch = 1-PL where 𝒃𝒊 item difficulty is the only item parameter

➢ Slope = discrimination 𝒂𝒊 = strength of relation of item to latent trait theta 𝜃𝑠

➢ In Rasch, 𝑎 = 1 and theta variance = ?; In 1PL, 𝑎 = ? and theta variance = 1

➢ “Items may not be equally ‘good’, so why not just let their slopes vary?”

• According to strict Rasch believers, the 2PL and rest of IRT are bananas

➢ Rasch models have specific properties that are lost once you allow the item 

curves to cross (by using item-varying 𝒂𝒊) → “Loss of Specific Objectivity”

▪ Under the Rasch model, subjects are ordered the same in terms of predicted 

responses regardless of which item difficulty location you’re looking at

▪ Under the Rasch model, items are ordered the same in terms of predicted 

responses regardless of what level of subject theta you’re looking at

▪ 𝒂𝒊 item discrimination represents a theta*item interaction → the item curves 

cross, so the ordering of subjects or items is no longer invariant, and this is “bad”

➢ “Items should not vary in discrimination if you know your construct!”
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1-PL (→Rasch) Model Predictions

Item Characteristic Curves - 1-PL (Rasch) Model
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𝒃𝒊 = item difficulty

location on latent 

trait at which

probability = .50

𝒂 = discrimination

slope at prob = .50, 

(logit = 0, which is 

point of inflection)

Note: equal 𝒂 terms 

means the ICCs will 

never cross → this 

maintains “Specific 

Objectivity”
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2PL IRT vs.  1PL IRT (Rasch):

What Goes into Theta
• In Rasch/1PL models, the sum score is a “sufficient statistic” for theta

➢ For example, given 5 items ordered in difficulty from easiest to hardest, 

each of these response patterns where 3/5 are correct would yield the 

same estimate of theta: 

1 1 1 0 0 (most consistent)

0 1 1 1 0

0 0 1 1 1

1 0 1 0 1  (???) 

…. (and so forth)

• In 2PL (logit or probit) models, items with higher discrimination (𝒂𝒊) 

count more towards theta (and theta SE will be lower with higher ai items) 

➢ It not only matters how many items you got correct, but which ones

➢ Rasch believers don’t like this idea, because then the ordering of 

subjects on latent trait theta is dependent on the item properties
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Yet Another Model for Binary Responses:

3-Parameter Logistic Model (3PL)

𝑝 𝑦𝑖𝑠 = 1 = 𝑐𝑖 + (1 − 𝑐𝑖)
exp 𝑎𝑖(𝜃𝑠 − 𝑏𝑖)

1 + exp 𝑎𝑖(𝜃𝑠 − 𝑏𝑖)

• 𝒃𝒊 = item difficulty → still is location (a fixed effect), but not at prob = .50

➢ Higher values → more difficult items (lower probability of a 1)

• 𝒂𝒊 = item discrimination → still is slope at 𝑏𝑖 (a fixed effect)

➢ Higher values = more discriminating items = better items at its location

• 𝒄𝒊 = item lower asymptote → “guessing” (where 𝒄𝒊 > 𝟎; is a fixed effect)

➢ Lower bound of probability of 1 independent of theta

➢ e.g., would be around .25 given 4 equally guess-able multiple-choice responses

➢ Could estimate a common 𝑐 across items as an alternative (but is not often done)

• Probability starts at guessing 𝑐𝑖 then depends on theta 𝜃𝑠, 𝑎𝑖 , and 𝑏𝑖

➢ 3-PL model is available starting in Mplus 7.4; 𝑐𝑖 is labeled as $2

➢ Require LOTS of subjects because 𝑐𝑖 parameters are hard to estimate—you must have 
enough low theta subjects to determine what the probability of guessing is likely to be 
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Item Characteristic Curves - 3-PL Model (a = .5)
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Item Characteristic Curves - 3-PL Model (a = 1)
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𝒃𝟏 =  −𝟏, 𝒄𝟏 = . 𝟎

𝒃𝟐 =  −𝟏, 𝒄𝟐 = . 𝟐

𝒃𝟑 =  𝟏, 𝒄𝟑 = . 𝟎

𝒃𝟒 =  𝟏, 𝒄𝟒 = . 𝟐

Top: Items with lower 

discrimination (𝒂𝒊 = . 𝟓)

Below: Items with 

higher discrimination 

(𝒂𝒊 = 𝟏)

Note that item difficulty 𝑏𝑖 

values are still at the point 

of inflection, but if 𝑐𝑖 > 0, 
that’s not at prob = .50 → 

expected prob at 𝑏𝑖 is higher 

by 𝑐𝑖 as: 𝑝𝑟𝑜𝑏 = (1 + 𝑐𝑖)/2
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One Last Model for Binary Responses:

4-Parameter Logistic Model (4PL)

𝑝 𝑦𝑖𝑠 = 1 = 𝑐𝑖 + (𝑑𝑖 − 𝑐𝑖)
exp 𝑎𝑖(𝜃𝑠 − 𝑏𝑖)

1 + exp 𝑎𝑖(𝜃𝑠 − 𝑏𝑖)

• 𝒃𝒊 = item difficulty → location (not at prob = .50)

• 𝒂𝒊 = item discrimination → slope (at location)

• 𝒄𝒊 = item lower asymptote → “guessing”

• 𝒅𝒊 = item upper asymptote → “carelessness” (so 𝑑𝑖 < 1)

➢ Maximum probability to be achieved independent of trait (theta 𝜃𝑠)

➢ Could be carelessness or unwillingness to endorse the item no matter what

• Probability starts at “guessing” 𝑐𝑖 , tops out at “carelessness” 𝑑𝑖 , 
then in between depends on theta 𝜃𝑠, 𝑎𝑖, and 𝑏𝑖

➢ 4-PL model in Mplus 7.4 onward; 𝑐𝑖 and 𝑑𝑖 are labeled as $2 and $3

➢ But good luck estimating it! May need to use a common 𝑐 and 𝑑 instead
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Anchoring: Model Identification in IRT
• As in CFA, we have a latent trait (a pretend predictor) without a scale: 

so we need to give each theta 𝜽𝒔 a mean and a variance

➢ This is called “anchoring” in IRT → CFA calls it “model identification”

➢ As in CFA, there are 2 equivalent options: Anchor by Subjects or Anchor by Items

• Anchor by subjects: Fix theta 𝜃𝑠 mean = 0 and theta 𝜃𝑠 variance = 1

➢ Is “z-score” (standardized factor) model identification used in CFA

➢ All item difficulties 𝑏𝑖 and item discriminations 𝑎𝑖 are then estimated

➢ In Rasch model, the common 𝑎 would be estimated but equal across items

• Anchor by items: Fix one item difficulty 𝑏𝑖 = 0 and one item 𝑎𝑖 = 1

➢ Is “marker item” approach to model identification used in CFA

➢ Mean and variance of theta 𝜃𝑠 are estimated instead

➢ Fixing mean of item difficulty = 0 is another way (more common in Europe)

• Big picture: as in CFA, the numerical scale doesn’t matter, all that matters 
is that subjects and items are on the same scale → “conjoint scaling”
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Information: Reliability in IRT Models
• “Information” ≈ reliability → measurement precision

• In CFA models (continuous 𝑦𝑖𝑠), item-specific “information” 

is rarely referred to, because standardized loadings cover it:

➢ How good is my item → how much information is in it?

▪ How much of its variance is “true” (shared with the factor) 

relative to how much of its variance is “error”?

▪ Information = unstandardized loading2 / error variance

➢ Note that information is assumed constant across trait values in CFA

▪ Items with a greater proportion of true variance are better, the end

▪ So the instrument’s “information function” is FLAT across trait values in CFA

➢ How do I make my test better? 

▪ More items with more information (with stronger factor loadings)

➢ Sum of information across items = Test information function

▪ Test information function will also be flat across trait values in CFA
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Item Information in CFA Models

• CFA has a linear slope (factor loading) → predicts the same increase in 

the 𝒚𝒊𝒔 item response for per unit higher 𝑭𝒔 (all across levels of 𝐹𝑠)

• 𝒚𝟏 has more information than 𝒚𝟔 (and a higher standardized factor 

loading), so 𝑦1 is better than 𝑦6, period(t) (for all possible factor scores)

𝑦1𝑠 =  4.55 + 1.23(𝐹𝑠) + 𝑒1𝑠

𝑒1𝑠
2 =  1.53

𝑦6𝑠 =  5.32 + 0.82(𝐹𝑠) + 𝑒6s

 
𝑒6𝑠

2 =  1.67

Std 𝑦1𝑠 = 2.60 + 0.71 𝐹𝑠 + 𝑒1𝑠

Std 𝑦6𝑠 = 3.48 + 0.54 𝐹𝑠 + 𝑒6𝑠

Info 𝑦1 = 1.232 / 1.53 = .998

Info 𝑦6 = 0.822 / 1.67 = .401
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Test Information in IRT Models
• IRT test information can be converted to a reliability metric as follows:

➢ Reliability = information / (information+1)

▪ Information of 4 converts to reliability of .80 

▪ information of 9 converts to reliability of .90

• This formula comes from classical test theory:

➢ Reliability = true var / (true var + error var)

➢ Reliability = 1 / (1 + error var), where error var = 1/info

➢ Reliability = 1 / 1 + (1/info) → info / (info+1)

• An analog of overall model-based reliability (e.g., omega) could be formed 

by summing reliabilities for each possible theta, weighted by the number 

of subjects at each level of theta, but (to me) that’s missing the point…

• Because the slopes relating Theta to the probability of an item response 

are non-linear, this means that reliability must VARY over theta

➢ So FOR WHOM is your test sufficiently reliable??
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Item Information in CFA vs. IRT
Item Characteristic Curves - 2-PL Model
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Effects of Item Parameters 

on Item Characteristic Curves

Item Characteristic Curves
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An important result of 

the non-linear slopes in 

an IRT model is that the 

slope stops working 

(so reliability decreases) 

as you move away from 

the item difficulty 

location. 

In the CFA model with 

linear slopes, the slope 

never stops working 

(at least in theory).
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1.00.51.00.51.00.51.00.5a discrimination

87654321Item

2.02.01.01.00.00.0-1.0-1.0b difficulty

1.00.51.00.51.00.51.00.5a discrimination

87654321Item
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Effects of Item Parameters 

on Item Information Curves

Item Information Functions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-3 -2 -1 0 1 2 3

Trait (q)

In
fo

rm
a
ti

o
n

item1

item2

item3

item4

item5

item6

item7

item8
Items with greater 𝑎𝑖 

item discrimination 

values have greater 

absolute information.

Information (reliability) 

is maximized around 

the item difficulty 

location.
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Test Information (and SE) by Theta
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If you sum all the item 

information curves, you get 

a test information curve 

that describes how reliable 

your set of items is over the 

range of the trait (Theta).

Test Information is very 

useful to know—it can tell 

you where the holes are 

in your measurement 

precision, it and guides you 

in adding/removing items.

There is no single “ideal” test information function—only what is 

optimal for your purposes of measurement. Here are a few examples….

( )
1

SE θ =
Test Info
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Another Example of (Not-So-Good) 

Test Information
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The goal of this test was 

to identify subjects with 

deficits in the latent trait. 

Hence, it is most useful to 

have test information 

maximized over the 

lower range of theta.

If subjects are high 

(enough) in ability, 

it doesn’t matter 

how high.

But test 

info only 

gets up 

to ~2…

(Uh oh!)

Image from my dissertation (the “done” kind)!
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Other Shapes of Test Information
• If the goal is to measure a trait across subjects equally well, and you expect 

people to be normally distributed, then your best bet is to create a test 

with information highest in the middle (where most people are likely to be)

• If your goal is to identify individuals below or above a cut-point, however, 

your test information function should ideally look more like this:

➢ Want to maximize sensitivity near

the cut-point region, and not waste

time measuring people well who are 

far away from the cut-point

➢ If classifying subjects is the goal of 

measurement, however, you might 

be better off with a different family 

of latent trait models in which Theta

is already a categorical “attribute” instead:

Diagnostic Classification Models, as covered

by the book Diagnostic Measurement …

 Theta →   cut-point

Test

Info
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How to Improve Your Reliability
• In CTT, because item properties are not part of the model, 

items are seen as exchangeable, and more items is better

➢ Thus, any new item is equally better for the model

• In CFA and IRT, more items is still better…

➢ In CFA, the question is “how much better”?

▪ This depends on the standardized loading; intercepts are not important 

▪ Specifies a linear relationship between theta and the item responses, 

so “for whom” isn’t relevant—a better item is better for everyone equally

➢ In IRT, the question is “how much better, and for whom?”

▪ Depends on the discrimination (𝑎𝑖 slope) and the difficulty (𝑏𝑖 location), 

respectively (difficulties are important, and are always estimated)

▪ Because of the nonlinear relationship between theta and the item 

responses, items are only useful for thetas in the middle of their S-curves
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Effects of Item Parameters 

on Item Information Curves

Item Information Functions
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Content aside, items with 

higher 𝑎𝑖 will be more useful

In addition to 𝑎𝑖 

item discrimination, 

though, you want to 

make sure you are 

covering the range 

of difficulty where 

you want to measure 

your subjects best.

2.02.01.01.00.00.0-1.0-1.0b difficulty

1.00.51.00.51.00.51.00.5a discrimination

87654321Item

2.02.01.01.00.00.0-1.0-1.0b difficulty

1.00.51.00.51.00.51.00.5a discrimination

87654321Item

PSQF 6249: Lecture 5a 49    

Subject Latent Trait (𝜽𝒔)



IRT and Adaptive Testing:

Fewer Items Can Actually Be Better
• In a normal distribution of the 

latent trait and a comparable 
distribution of item difficulty, 
extreme subjects are usually 
measured less well
(higher SE).

• For fixed-item tests, more 
items is generally better, 
but one can get the same 
precision of measurement with 
fewer items by using adaptive 
tests with items of targeted 
levels of difficulty. Different 
forms across subjects are 
given to maximize efficiency.

Image from Embretson & Reise (2000)
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IRT (and CFA) Help Measure Change AND
Maintain Sensitivity across Samples

• Theta is scaled and interpreted relative to the items, not relative 

to the other persons in the sample (in 2PL, is item difficulty at prob = .50)

➢ This means you can give different forms over time and still compare thetas

➢ MUST have some “linking items” → common set of items across occasions

➢ Although this property is helpful when dealing with “accidental”

alternative forms (e.g., changed response options, dropped items), 

linking items can be used advantageously as well

➢ Here, we grow a test over time within a sample

(i.e., using “vertical equating/scaling”):

Latent Trait Time 1

1 2 3 4 5 6

Latent Trait Time 2

3 4 5 6 7

Latent Trait Time 3

4 5 6 7 8 9
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SF-36: measure of higher 
physical functioning

 

 ADL: measure of lower 
physical functioning

 So don’t choose: Administer a 
core set of linking items from 
both tests to a single sample

Linking items then form a 
common metric

– More precision than single test

– Allows for comparisons across 
groups or studies

See Mungas & Reed (2000) for an 
example of linking over forms

Linking Thetas 
across Tests
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Another Benefit of IRT (and CFA)

• IRT: If the model fits, the scale of theta is linear/interval

➢ Supports mathematical operations that assume interval measurement

➢ Same ordering of subjects as in raw scores, but the distances between 

subjects may be different, especially at the ends (due to less reliability)

• CTT: Sum scores have an ordinal relationship to the latent 

trait at best

➢ Does not support operations that assume interval measurement, 

which can bias tests of mean differences, regression slopes, etc.

➢ Spurious interactions can result in tests of mean differences if groups 

differ in how well they are measured (i.e., floor and ceiling effects)

• Bottom line: Measurement matters for testing everyday hypotheses, 

NOT just when fitting measurement models for specific issues
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Example from Mungas & Reed (2000)

Test Curve for MMSE Total

Interval Theta

The bottom and top of the 

MMSE total score (ordinal) 

are “squished” relative to the 

latent trait scale (interval).

This means that one-unit 

changes along the MMSE 

total do not really have the 

same meaning across the 

latent trait, which makes 

many kinds of comparisons 

problematic.

Δ5

Δ2SD

Δ5

Δ.5SD
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Example from Mungas & Reed (2000)

Right: They combined 3 tests to 

get better measurement, as 

shown in the test curve →

Below: Items at each trait location 

contribute to scale’s capacity to 

differentiate persons in ability at 

each point in the continuum.

There is a hole near the 

top, which explains the 

flattening of the curve 

(less information there).
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IRT and IFA Part 1: Summary
• CFA models use ≥1 latent factors to predict continuous

item responses (as in linear regression)

• IFA/IRT models use ≥1 latent factors to predict categorical
item responses (as in binary, ordinal, or nominal regression)

➢ IFA models will look more like CFA models – stay tuned for Part 2!

➢ IRT models look strange, but their 𝒃 location parameters are (arguably) 
more useful than the IFA versions (which is why I start with IRT)

▪ At a minimum, items differ in 𝒃 = trait location (as difficulty/severity) → 1PL or Rasch

▪ Could also allow different 𝒂 discrimination (as max slope) across items → 2PL

▪ Could also allow different 𝒄 lower or 𝒅 upper asymptotes → 3PL or 4PL

• Because latent traits (factors, variables, now called theta 𝜽) 
have a nonlinear relation to the probability of a response:

➢ Items are most useful for trait levels at their 𝒃 location parameter

➢ Reliability (as “test information”) must vary over the latent trait, because 
it depends on how many (and how good) items you have at each location!
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