
Classical Test Theory (CTT) 

for Assessing Reliability
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• Topics:

➢ Review of concepts and summary statistics

➢ Characterizing differences between indicators

➢ CTT-based assessments of reliability

▪ Why alpha doesn’t really matter

▪ Why standard errors of measurement should matter



Review:  What are we trying to do?
• Measure a latent trait: unobservable ability, characteristic, 

attitude, or other type of individually-varying construct

➢ “Latent” = Not directly observable

➢ “Trait” = true score, factor score, or theta as predictor(s) in 
measurement models; aka, latent construct, variable, or factor

➢ The LTMMs we will cover are for continuous latent traits

• How to measure a latent trait? Collect observed responses 
from indicators chosen to measure the latent trait

➢ “Indicator” = item, trial, or other response-specific outcome

➢ Indicators can be any kind of variable (categorical or quantitative)

• How do we know we’ve done good job measuring the trait? 
Collect evidence using the indicator responses…

➢ Two distinct ways such evidence gets used to represent a trait: 

▪ Build a composite (sum or average across indicator responses) → CTT

▪ Use all indicator responses as outcomes of latent trait predictor instead
→ this is what happens in latent trait measurement models (LTMMs)
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Big Picture of Instrument Development
• Primary concerns about the use of an instrument to measure 

one or more latent traits have a hierarchical structure:

➢ Validity: Extent to which an instrument measures what it is supposed to

▪ Validity is always a matter of degree and depends critically on how it is used

▪ Almost always demonstrated by external evidence: relationships to measures of 
other constructs in expected directions (e.g., discriminant and convergent validity)

➢ An essential precursor to validity is reliability: Extent to which an 
instrument measures a latent trait with sufficient consistency (i.e., 
extent to which the same result would be obtained repeatedly)

▪ “Validity is measuring the right thing; reliability is measuring the thing right”

▪ Reliability indices will be provided differently across CTT and LTMMs (stay tuned)

➢ An important precursor to reliability is dimensionality: Accuracy of the 
mapping of the observed indicators to the latent traits they measure

▪ Reliability is per trait! Most reliability indices assume unidimensional traits 

▪ What follows in this lecture presupposes that dimensionality is KNOWN!
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Classical Test Theory (CTT)
• The TOTAL is the unit of analysis: 𝒀𝒕𝒐𝒕𝒂𝒍 = 𝑻𝒓𝒖𝒆 + 𝑬𝒓𝒓𝒐𝒓

➢ True score 𝑻:

▪ Best estimate of latent trait is mean over infinite replications

➢ Error 𝒆:

▪ Expected value (mean) of 0; theoretically uncorrelated with 𝑇

▪ Errors are supposed to cancel out over repeated observations

➢ So the expected value of 𝑻 is 𝒀𝒕𝒐𝒕𝒂𝒍

▪ This translates into 𝒀𝒕𝒐𝒕𝒂𝒍 = 𝑻 true-score in practice

▪ 𝒀𝒕𝒐𝒕𝒂𝒍 is referred to as a total-score, test-score, or scale-score

• Provides a framework with which to quantify reliability

➢ What proportion of total-score variance is due to true-score variance?

➢ Understanding parts of CTT logic for quantifying reliability relies on 

traditional univariate and bivariate summary statistics for indicators…

Ytotal
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Score

error

?

?
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Means, Variances, Covariances, and Correlations

PSQF 6249: Lecture 3 5    

(Arithmetic) Mean (𝝁):

Central tendency of 𝑦𝑖𝑠

Using population notation: 𝑁 = # subjects, 𝑠 = subject, 𝑖 = item for 𝑦𝑖𝑠

Covariance (𝑪𝒐𝒗): 

How outcomes (e.g., 𝑦1𝑠 and 

𝑦2𝑠) go together in original 

metrics (unstandardized)

Pearson Correlation (𝒓): 

Covariance that has been 

standardized into −1 to 1

𝑉𝑎𝑟 𝑦𝑖 = 𝜎𝑦𝑖
2 =

σ𝑠=1
𝑁 𝑦𝑖𝑠 − ത𝑦𝑖

2

𝑁

𝜇𝑖 =
σ𝑠=1

𝑁 𝑦𝑖𝑠

𝑁

Variance (𝑽𝒂𝒓): 

Dispersion of 𝑦𝑖𝑠 

in squared units

𝐶𝑜𝑣 𝑦1, 𝑦2 = 𝜎𝑦1,𝑦2
=

σ𝑠=1
𝑁 𝑦1𝑠− ത𝑦1 𝑦2𝑠− ത𝑦2

𝑁

𝑟 𝑦1, 𝑦2 =
𝐶𝑜𝑣 𝑦1, 𝑦2

𝑉𝑎𝑟(𝑦1) 𝑉𝑎𝑟(𝑦2)



What about Categorical Indicators?
• Computing means, variances, covariances, and correlations 

is standard and intuitive for quantitative indicators 

➢ When the numbers are actually numbers (interval measurement)

➢ e.g., magnitude estimation slider bars, response times 

• But observed indicators are more often categorical: 

➢ Binary (i.e., dichotomous) → 2 options 

➢ Ordinal (i.e., “Likert scale”) → 3+ ordered options

➢ Nominal (i.e., “multinomial”) → 3+ unordered options

• For nominal indicators, means and variances make no sense… 

➢ Frequency of each category is needed instead (stay tuned!)

➢ But what about summarizing binary or ordinal indicators?
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Binary and Ordinal Indicators
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Mean (𝒑𝒊)

Variance

Mean and Variance of a Binary Variable

𝑉𝑎𝑟𝑚𝑎𝑥 𝑦𝑖 =
𝑘 − 1 2

2

• For binary indicators (𝒚𝒊𝒔 coded 0 or 1), variance is not a 

separately estimated quantity (as it is in quantitative indicators)

➢ If 𝒑𝒊 = proportion of 1 values, and 𝒒𝒊 = proportion of 0 values:

➢ Mean 𝝁𝒊 = 𝒑𝒊, 𝑉𝑎𝑟(𝒚𝒊) = 𝒑𝒊 ∗ 𝒒𝒊 (same result even if computed as usual)

• For ordinal indicators, you may see means and variances 

calculated as usual, but they should give you pause…

➢ e.g., 1=Strongly Disagree, 2=Disagree, 3=Neutral, 4=Agree, 

5=Strongly Agree…. could equally be 1, 20, 300, 4000, 50000

➢ Maximum variance is limited by 

𝑘 = # of response options used



Differences Between Indicators
• All indicators can be characterized by two properties 

with respect to how they map onto the latent trait that 
they measure: item difficulty and item discrimination

➢ Item = indicator, but the term “item” is always used in this context

➢ Properties will be indexed differently across CTT and LTMMs

• Item difficulty is the indicator’s location on the metric of the 
latent trait; also known as item “severity” for non-ability traits

➢ i.e., an item of difficulty level X measures people at trait level X well

➢ So, to measure people with a range of trait levels accurately, you need 
to include indicators that have a corresponding range of item difficulty

• Item discrimination is how strongly the indicator relates 
to the trait (“discrimination” is still used for non-ability traits)

➢ Is the degree to which the indicator differentiates among persons 
in their latent traits (should be positive, and stronger is always better)
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Difficulty and Discrimination in CTT
• Under the belief that the best estimate of the latent trait is 

the total-score across indicators (i.e., sum or average) in CTT: 

• Item difficulty/severity (location on the latent trait) 

is the indicator’s mean across respondents 

➢ Only applicable to binary or quantitative items; also ordinal if you 

believe they are numbers (which is usually what people do in CTT)

➢ Note that the difficulty terminology is conceptually backwards: An item 

with a higher mean is labeled as “higher difficulty” even though more 

people did well than not (so items with higher means are actually easier)

▪ For this reason, I think it’s ok to describe item means as indices of “easiness” instead

➢ In LTMMs, difficulty/severity will become some kind of model intercept

(which will break the problematic tie of respondents to indicators)

• Item difficulty/severity is often ignored in evaluating items in 

CTT, except when it causes problems with discrimination…
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Difficulty and Discrimination in CTT
• Under the belief that the best estimate of the latent trait is 

the total-score across indicators (i.e., sum or average) in CTT: 

• Item discrimination (relationship to the latent trait) is the 

indicator’s Pearson correlation with the total-score 

➢ Called “item–total” correlation; often replaced with “item–remainder”

correlation (i.e., total without that item) so the correlation isn’t inflated

➢ Only applicable to binary or quantitative items; also to ordinal if you 

believe they are numbers (which is usually what people do in CTT)

➢ In LTMMs, discrimination will become some kind of model slope

• Items of extreme difficulty/severity have a restricted range, 

which may result in smaller item–total correlations

➢ Following common advice to remove extreme items will reduce your 

ability to measure respondents of corresponding extreme trait levels!
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Reliability of CTT Total-Scores
• Before and after screening/selecting items (i.e., an iterative process), 

a total-score is created: a sum or mean across indicator responses 

➢ The total-score is now the unit of analysis: 𝒀𝒕𝒐𝒕𝒂𝒍 = 𝑻𝒓𝒖𝒆 + 𝑬𝒓𝒓𝒐𝒓

➢ Even though the total-score doesn’t know what kind of indicators 

were used to create it, the total-score is always treated as a 

quantitative variable (i.e., “ordinal-treated-as-interval”)

• Then we need to quantify reliability: the consistency with which

𝑌𝑡𝑜𝑡𝑎𝑙 measures 𝑇𝑟𝑢𝑒 for a given respondent (i.e., subject)

➢ Best index of 𝑇 for each subject is supposed to be the mean 𝑌𝑡𝑜𝑡𝑎𝑙 over 

infinite replications… but that’s not the kind of data usually collected!

➢ Instead of multiple replications of total-score for a single respondent, 

more often collected are single total-scores for multiple respondents!

➢ So reliability is instead defined using between-subject sources

of respondent variance: 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑉𝑎𝑟(𝑇𝑟𝑢𝑒) / 𝑉𝑎𝑟(𝑌𝑡𝑜𝑡𝑎𝑙)

▪ But to quantify reliability, we need more than one 𝑌𝑡𝑜𝑡𝑎𝑙 per subject…
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How Only Two Total-Scores Can Yield 

a Reliability Coefficient in CTT

• 𝑦1𝑠 = 𝑇𝑠 + 𝑒1𝑠

• 𝑦2𝑠 = 𝑇𝑠 + 𝑒2𝑠

• Pearson Correlation between total-scores:

➢ 𝑟 𝑦1, 𝑦2 =
𝜎𝑦1,𝑦2

𝜎𝑦1
𝜎𝑦2

=
𝜎𝑇+𝑒1,𝑇+𝑒2

𝜎𝑦1
𝜎𝑦2

=
𝜎𝑇,𝑇 + 𝜎𝑇,𝑒1+ 𝜎𝑇,𝑒2+ 𝜎𝑒1,𝑒2

𝜎𝑦1
𝜎𝑦2

=
𝜎𝑇

2

𝜎𝑦
2

• In other words: 𝑟 𝑦1, 𝑦2 = 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑉𝑎𝑟(𝑇𝑟𝑢𝑒) / 𝑉𝑎𝑟(𝑌𝑡𝑜𝑡𝑎𝑙)

➢ So the Pearson correlation of two total-scores indexes how much of the 

observed total-score variance is due to “true” between-subject differences 

(if we believe all these untested assumptions, that is)

CTT assumptions to calculate reliability:

•  Errors 𝑒1𝑠 and 𝑒2𝑠 have equal variance

•  Total-scores 𝑦1𝑠 and 𝑦2𝑠 have equal variance  

•  Same subject-specific true score (𝑇𝑠) at both times

•  𝑒1𝑠 and 𝑒2𝑠 are uncorrelated with each other and 𝑇𝑠
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3 Ways of Quantifying Reliability
• After measuring variance across subjects* two ways:

1. Consistency of same test over time

▪ Test-retest reliability

2. Consistency over alternative test forms

▪ Alternative forms reliability

▪ Split-half reliability

3. Consistency across items within a test

▪ Internal consistency (alpha or KR-20)

** FYI: Some would say we have violated “ergodicity” by 

quantifying reliability in this between-subjects way:

➢ What factors cause differences between respondents is not the same 

as what factors causes differences within a respondent over occasions…
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1. Test-Retest Reliability…

What could go wrong?
• In a word, CHANGE: Test-retest reliability assumes that 

any difference in true-score is due to measurement error

➢ Error = a characteristic of the test

➢ It could be due to a characteristic of the person, too

• In a word, MEMORY: Assumes that testing procedure 

has no impact on a given subject’s true-score, although:

➢ Reactivity can lead to higher scores: learning, familiarity, memory…

➢ Reactivity can lead to lower scores: fatigue, boredom…

• In a word (or two), TEMPORAL INTERVAL

➢ Which test-retest correlation is the “right” one?

➢ Should vary as a function of time (longer intervals → smaller correlation)

➢ Long enough to limit memory, but short enough to avoid real change… 

how long is that, exactly????

PSQF 6249: Lecture 3 14    



2. Alternative Forms or Split-Half Reliability
• Two forms of same test administered “close” in time

➢ Different indicators on each, but still measuring same construct

➢ Forms need to be “parallel” – this means no systematic differences 

between in the summary statistics of the two total-scores 

▪ Responses should differ ONLY because of random fluctuation (error) 

• OR just take one test and split it in half! → Ta-da, two forms!

➢ e.g., odd indicators = 𝑦1𝑠, even indicators = 𝑦2𝑠

➢ BUT reliability is now based on half as many indicators!

➢ What if we could extrapolate what reliability would be with twice as 

many indicators… Can do so using a reduced form of the “Spearman 

Brown Prophecy Formula” (assuming parallel indicators; stay tuned)

▪ 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑛𝑒𝑤 = 2 ∗ 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑜𝑙𝑑 / (1 + 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑜𝑙𝑑)

▪ e.g.,  𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑜𝑙𝑑 = .75?   𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑛𝑒𝑤 = 2 ∗ .75 / 1.75 = .86
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More about Two Total-Score 

Reliability… What could go wrong?

Alternative Forms Reliability:

• In a word, PARALLEL:

➢ Have to believe forms are sufficiently parallel: Both total-scores have same mean, 

same variance, same true-scores and true-score variance, same error variance… 

➢ AND by extrapolation, all indicators within each test and across tests have 

equivalent psychometric properties and same correlations among them

➢ Otherwise, indicator differences could create total-score differences

➢ Still susceptible to problems caused by reactivity (change or retest effects)

Split-Half Reliability:

• In a word (or two), WHICH HALF: There are many possible splits that 

would yield different reliability estimates… (e.g.,125 splits for 10 indicators)
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3. Internal Consistency Reliability
• For quantitative indicators, this is usually Cronbach’s Alpha…

➢ Or “Guttman-Cronbach alpha” (Guttman 1945 < Cronbach 1951)

➢ Equivalent form of alpha for binary items is named “KR 20”

• Alpha has been described in multiple ways:

➢ Is the mean of all possible split-half correlations

➢ As an index of “internal consistency”

▪ Although Rod McDonald disliked this term… everyone else uses it

• Alpha is a lower-bound estimate of reliability under 
assumptions that all indicator responses:

➢ Are unidimensional → MUST measure a single latent trait

➢ Are tau-equivalent → “true-score equivalent”→ (sufficiently)
equal item discrimination → equally related to the true score

➢ Have uncorrelated errors (otherwise → multidimensional)
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Where Cronbach’s Alpha comes from…

• The sum of the 𝑰 indicator variances (e.g., 𝐼 = 3 here):

➢ σ𝑖=1
𝐼 𝑉𝑎𝑟(𝑦𝑖) = 𝑉𝑎𝑟(𝑦1) + 𝑉𝑎𝑟(𝑦2) + 𝑉𝑎𝑟(𝑦3) → only the variances

➢ Will become a baseline for expected amount of total-score variation

• Variance of the 𝑰 indicators’ total-score is given by the sum

the indicators’ variances PLUS their covariances:

➢ 𝑉𝑎𝑟 𝑌𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑎𝑟 𝑦1 + 𝑉𝑎𝑟 𝑦2 + 𝑉𝑎𝑟 𝑦3

+ 𝟐𝐶𝑜𝑣(𝑦1, 𝑦2) + 𝟐𝐶𝑜𝑣(𝑦1, 𝑦3) + 𝟐𝐶𝑜𝑣(𝑦2, 𝑦3)

➢ Why is the 𝟐 needed?

▪ Covariance matrix is symmetric

▪ Sum the whole thing to get to the

variance of the sum of the indicators

➢ So should be greater than sum of 

indicator variances above if they have 

something in common → covariance
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𝑦1 𝑦2 𝑦3

𝑦1 𝜎𝑦1
2 𝜎𝑦1,𝑦2

𝜎𝑦1,𝑦3

𝑦2 𝜎𝑦1,𝑦2
𝜎𝑦2

2 𝜎𝑦2,𝑦3

𝑦3 𝜎𝑦1,𝑦3
𝜎𝑦2,𝑦3

𝜎𝑦3
2



Cronbach’s Alpha:  It’s not what you think.

• 𝒂𝒍𝒑𝒉𝒂 (𝛼) =
𝐼

𝐼−1
∗

𝑉𝑎𝑟 𝑌𝑡𝑜𝑡𝑎𝑙 − σ𝑖=1
𝐼 𝑉𝑎𝑟 𝑦𝑖

𝑉𝑎𝑟 𝑌𝑡𝑜𝑡𝑎𝑙

➢ Numerator reduces to the indicator covariances → if the indicators are 

related, the variance of the indicators’ total-score, 𝑉𝑎𝑟 𝑦𝑡𝑜𝑡𝑎𝑙 , should 

be bigger than the sum of the indicator variances, σ𝑖=1
𝐼 𝑉𝑎𝑟 𝑦𝑖

• Easier way: 𝒂𝒍𝒑𝒉𝒂(𝛼) =
𝐼 ҧ𝑟

1 + ҧ𝑟(𝐼−1)

➢ Two ways to make alpha bigger: (1) Get more indicators, (2) increase the 

average inter-indicator correlation (but its’s hard to do both at once)

• Alpha reliability assumes that all indicators are unidimensional

➢ Formula does not take into account the spread of the inter-indicator 

correlations → so alpha does NOT assess indicator dimensionality!

• Alpha reliability assumes indicators have equal discrimination (tau-

equivalent; equal relation to latent trait) with uncorrelated errors

➢ Indicator properties are not included in the formula → exchangeable
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ҧ𝑟 = average inter-indicator 

Pearson correlation 

𝐼 = # indicators



Alpha: What could go wrong?
• Alpha does not index unidimensionality → it does NOT index 

the extent to which the indicators measure the same construct

• The variability across the inter-indicator correlations matters, too!

• We will use LTMMs predicting indicator responses to examine dimensionality

Example from: John, O. P., & Benet-Martinez, V. (2014). Measurement: Reliability, construct validation, and scale construction. In H. T. Reis & C. M. 

Judd (Eds.), Handbook of research methods in social and personality psychology (pp. 3473-503, 2nd ed.). New York, NY: Cambridge University Press.
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GRE 2020-2021 Test Information: https://www.ets.org/s/gre/pdf/gre_guide.pdf
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How to Get Alpha UP:  More Items!
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Btw: For the 2020 GRE 

psychology subject test, 

(KR-20) alpha = .95… 

for about 205 items, 

this means ത𝒓 =. 𝟎𝟖𝟒!

Given indicator ത𝒓, 

𝒂𝒍𝒑𝒉𝒂 =
𝐼 ҧ𝑟

1 + ҧ𝑟(𝐼 − 1)

Given alpha (𝜶), 

ത𝒓 =
𝛼

𝐼 − 𝛼𝐼 + 𝛼

Number of 

Indicators 𝐼
Average Indicator ҧ𝑟

.2 .4 .6 .8

2 .333 .572 .750 .889

4 .500 .727 .857 .941

6 .600 .800 .900 .960

8 .666 .842 .924 .970

10 .714 .879 .938 .976

https://www.ets.org/s/gre/pdf/gre_guide.pdf


Kuder Richardson (KR) 20: 

Alpha for Binary Items (Indicators)
• From ‘Equation 20’ in their 1937 paper:

• Numerator again reduces to covariance among indicators…

➢ Sum of the indicator variances (sum over indicators of 𝑝𝑞) is just the variances

➢ Variance of the indicators’ total-score has their covariances in it, too

➢ Numerator reduces to the indicator covariances → if the indicators are related, 

the variance of the sum of the indicators 𝑉𝑎𝑟 𝑦𝑡𝑜𝑡𝑎𝑙 should be bigger than the 

sum of the indicator variances σ𝑖=1
𝐼 𝑉𝑎𝑟 𝑦𝑖

➢ So KR20 is the same thing as alpha (it’s just a computational shortcut)

➢ Btw, this is how reliability has been computed for the GRE subtests… !

𝑘 = # items (𝐼 before)

𝑝 = proportion of 1s

𝑞 = proportion of 0s

Kuder, G. F., & Richardson, M. W. (1937). The theory of the estimation of test reliability. Psychometrika, 2(3), 151–160.
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Limited Reliability of Binary Indicators
• The possible Pearson’s 𝒓 for binary variables will be limited when they 

are not evenly split into 0/1 because their variance depends on their mean

➢ Remember: Mean = 𝑝𝑖 , Variance = 𝑝𝑖 1 − 𝑝𝑖 = 𝑝𝑖𝑞𝑖

• If two indicators (𝑥 and 𝑦) differ in 𝑝𝑖, such that 𝑝𝑦 > 𝑝𝑥

➢ Maximum covariance: 𝐶𝑜𝑣(𝑥, 𝑦) = 𝑝𝑥(1 − 𝑝𝑦)

➢ This problem is known as “range restriction”

➢ Here this means the maximum Pearson’s 𝒓
will be smaller than ±𝟏 it should be:

➢ Some examples using this formula 

to predict maximum Pearson 𝑟 values →

➢ So if indicator ത𝒓 is limited, so is reliability

as measured by alpha (or KR-20)…
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0.1 0.2 0.67

0.1 0.5 0.33

0.1 0.8 0.17

0.5 0.6 0.82

0.5 0.7 0.65

0.5 0.9 0.33

0.6 0.7 0.80

0.6 0.8 0.61

0.6 0.9 0.41

0.7 0.8 0.76

0.7 0.9 0.51

0.8 0.9 0.67
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Correlations for Binary or Ordinal Indicators

• Pearson correlation: between two quantitative variables, 

working with the observed distributions as they actually are

• Phi correlation: between two binary variables, still working with the 

observed distributions (= Pearson with computational shortcut)

• Point-biserial correlation: between one binary and one quantitative 

variable, still working with the observed distributions (and still = Pearson)

• Tetrachoric correlation: between “underlying continuous” distributions 

of two actually binary variables (not = Pearson)

• Biserial correlation: between “underlying continuous” (but really binary) 

and observed quantitative variables (not = Pearson)

• Polychoric correlation: between “underlying continuous” distributions 

of two ordinal variables (not = Pearson)

• We will make use of tetrachoric and polychoric correlations in LTMMs 

predicting binary and ordinal indicator responses (limited-info estimation)
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More Correlations: Pearson vs. Intraclass
• Pearson’s 𝒓 is problematic for assessing reliability across raters, 

because it ignores relevant differences in mean and variance across 
raters by standardizing each variable separately

➢ e.g., multiple raters (𝑦1𝑠, 𝑦2𝑠) each provide scores for the same set of targets

• Solution: use an “Intraclass Correlation” (ICC) instead, which 
standardizes across all raters using a common mean and variance

➢ For example, for two raters:  ICC 𝑦1, 𝑦2 =
σ𝑠=1

𝑁 𝑦1𝑠−ഥy y2𝑠−ഥy

(𝑁−1)∗𝑠2

where ത𝑦 =
σ𝑠=1

𝑁 𝑦1𝑠+y2𝑠

2𝑁
and 𝑠𝑦

2 =
σ𝑠=1

𝑁 𝑦1𝑠− ത𝑦 2+ σ𝑠=1
𝑁 𝑦2𝑠− ത𝑦 2

2𝑁−1

➢ ICC is also a ratio of variances: 𝐼𝐶𝐶 =
𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛−𝑇𝑎𝑟𝑔𝑒𝑡𝑠

2

𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛−𝑇𝑎𝑟𝑔𝑒𝑡𝑠
2 +𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛−𝑅𝑎𝑡𝑒𝑟𝑠

2 +𝑠𝑤𝑖𝑡ℎ𝑖𝑛−𝑏𝑜𝑡ℎ
2

• ICCs can readily be extended to more than two raters, as well as to 
quantify the effect of multiple distinct sources of sampling variance

➢ e.g., multiple raters of multiple targets across days—how much variance is due to each?

➢ Btw, this is the basis of “Generalizability Theory” (or G-Theory)—different variance 
components can be used to compute different reliability types (relative or absolute)

25    



PSQF 6249: Lecture 3

Intraclass Correlation Example
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Test1 Test2

40
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60
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90
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110

120

130

Test5 Test6

𝑀:  97  100

𝑆𝐷:  15 15
 𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑟 =  .670
𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 𝑟 =  .679

𝑀:  85 100

𝑆𝐷:  15 15
 𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑟 =  .670
𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑎𝑠𝑠 𝑟 =  .457

𝐼𝐶𝐶 =
𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛−𝑇𝑎𝑟𝑔𝑒𝑡𝑠

2  

𝑠𝐵𝑒𝑡𝑤𝑒𝑒𝑛−𝑇𝑎𝑟𝑔𝑒𝑡𝑠
2 + 𝒔𝑩𝒆𝒕𝒘𝒆𝒆𝒏−𝑹𝒂𝒕𝒆𝒓𝒔

𝟐 + 𝑠𝑤𝑖𝑡ℎ𝑖𝑛−𝑏𝑜𝑡ℎ
2
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Reliability in a Perfect World, Part 1

• What would my reliability be if I just added more indicators?

• Spearman-Brown Prophesy Formula

➢ 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑁𝐸𝑊 =
𝑟𝑎𝑡𝑖𝑜∗𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑜𝑙𝑑

1+ (𝑟𝑎𝑡𝑖𝑜−1)∗𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝑜𝑙𝑑

➢ For example:

▪ Old reliability = .40

▪ Ratio = 5 times as many indicators (had 10, what if we had 50)

▪ New reliability = .77

• To use this formula, you must assume PARALLEL indicators

➢ All indicator discriminations equal, all indicator error variances equal, 

all covariances and correlations among indicators are equal, too

➢ (Unlikely) assumption of parallel indicators is testable in LTMMs
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Assumptions about Indicators When 

Calculating Score Reliability in CTT
• Use of alpha as an index of reliability of total-scores requires 

an assumption of tau-equivalent indicators:

➢ aka, “true-score equivalence” → equal item discrimination

➢ Translates to equal covariances among indicators

▪ But not necessarily equal correlations…(because still different error variances)

• Use of Spearman-Brown Prophesy formula to predict new 
reliability requires an assumption of parallel indicators:

➢ Tau-equivalent indicators PLUS equal error variances 

➢ This translates into equal correlations among indicators, too

• Btw, parallel indicators is also required to get a perfect correlation 
between latent trait estimates (of predictors as used in an LTMM) 
and total-scores as latent trait estimates in CTT 

➢ See McNeish & Wolf (2020) for constraints needed (in your readings)

PSQF 6249: Lecture 3 28    

https://link.springer.com/article/10.3758/s13428-020-01398-0


Reliability in a Perfect World, Part 2
• Attenuation-corrected correlations

➢ What would our correlation between two latent traits 

be if our total-scores were “perfectly reliable”?

➢ 𝑟𝑛𝑒𝑤 = 𝑟𝑜𝑙𝑑 𝑟𝑒𝑙𝑥 ∗ 𝑟𝑒𝑙𝑦 → all from same sample

➢ For example: 

▪ Old correlation between 𝑥 and 𝑦: 𝑟 = .38

▪ 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑥 = .25

▪ 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑦 = .55

▪ New and “unattenuated” correlation: 𝑟 = 1.03

➢ Anyone see a problem here?

▪ Btw—this logic forms the basis of SEM ☺

PSQF 6249: Lecture 3 29    



Using Reliability Coefficients → SE
• Reliability coefficients (𝑅𝑒𝑙) are sample-level statistics… 

➢ But reliability is a means to an end in interpreting a score for a 
given individual—we use reliability to get the error variance

➢ 𝑉𝑎𝑟 𝑇𝑟𝑢𝑒 = 𝑉𝑎𝑟 𝑌𝑡𝑜𝑡𝑎𝑙 ∗ 𝑅𝑒𝑙; so 𝑉𝑎𝑟(𝐸𝑟𝑟𝑜𝑟)= 𝑉𝑎𝑟 𝑌𝑡𝑜𝑡𝑎𝑙 – 𝑉𝑎𝑟 𝑇𝑟𝑢𝑒

➢ 𝑺𝑫 𝒆𝒓𝒓𝒐𝒓 is individual standard error of measurement, 𝑺𝑬

➢ 95% CI for individual total-score = 𝒀𝒕𝒐𝒕𝒂𝒍 ± (𝟏. 𝟗𝟔 ∗ 𝑺𝑬)

▪ Gives precision of true score estimate in the metric of the original total-score

• e.g., if 𝑉𝑎𝑟 𝑌𝑡𝑜𝑡𝑎𝑙 = 100 and 𝑦𝑡𝑜𝑡𝑎𝑙 for subject 𝑠 = 50

➢ 𝑅𝑒𝑙 = .91, 𝑉𝑎𝑟 𝐸𝑟𝑟𝑜𝑟 = 9, 𝑆𝐸 = 3 → 95% 𝐶𝐼 ≈ 44 to 56
𝑅𝑒𝑙 = .75, 𝑉𝑎𝑟 𝐸𝑟𝑟𝑜𝑟 = 25, 𝑆𝐸 = 5 → 95% 𝐶𝐼 ≈ 40 to 60

➢ Note this assumes a symmetric distribution, and thus the limits of 
the CI can go out of bounds of the scale for extreme scores

➢ Note this version also assumes the SE for each person is the same!

➢ Cue real-world example using the pre-pandemic GRE…
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GRE 2020-2021 Test Information was available here, but it has since been removed: https://www.ets.org/s/gre/pdf/gre_guide.pdf
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95% CIs for Individual Score:  Verbal
M=150.4, SD=8.5, range=130 to 170; SE=1.4 to 3.7
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GRE 2020-2021 Test Information: https://www.ets.org/s/gre/pdf/gre_guide.pdf
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95% CIs for Individual Score: Quantitative
M=153.4, SD=9.4, range=130 to 170; SE=1.0 to 3.5
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Intermediate Summary: CTT Reliability
• CTT unit of analysis is the TOTAL: 𝒀𝒕𝒐𝒕𝒂𝒍 = 𝑻𝒓𝒖𝒆 + 𝑬𝒓𝒓𝒐𝒓

➢ Total-score is best estimate of True Score (i.e., the Latent Trait)

➢ I will call this an “ASU” measurement model (ASU = Add Stuff* Up)

▪ ASU model assumes unidimensionality – the only thing that matters is the one 𝑇𝑟𝑢𝑒

➢ Reliability of total-score cannot be quantified without assumptions that range 

from somewhat plausible to downright ridiculous (testable in item-level models)

• Individual indicator responses are not included, which means: 

➢ No way of explicitly testing dimensionality

➢ Assumes all items are equally discriminating (“true-score-equivalent”)

▪ All items are equally related to the latent trait (also called “tau-equivalent”)

➢ To make a test better, you need more items

▪ What kind of items? More.

➢ Measurement error is assumed constant across the latent trait

▪ People low-medium-high in True Score are measured equally well

PSQF 6249: Lecture 3 33    


	Intro
	Slide 1: Classical Test Theory (CTT)  for Assessing Reliability
	Slide 2: Review:  What are we trying to do?
	Slide 3: Big Picture of Instrument Development
	Slide 4: Classical Test Theory (CTT)
	Slide 5: Means, Variances, Covariances, and Correlations
	Slide 6: What about Categorical Indicators?
	Slide 7: Binary and Ordinal Indicators
	Slide 8: Differences Between Indicators
	Slide 9: Difficulty and Discrimination in CTT
	Slide 10: Difficulty and Discrimination in CTT

	Reliability
	Slide 11: Reliability of CTT Total-Scores
	Slide 12: How Only Two Total-Scores Can Yield  a Reliability Coefficient in CTT
	Slide 13: 3 Ways of Quantifying Reliability
	Slide 14: 1. Test-Retest Reliability… What could go wrong?
	Slide 15: 2. Alternative Forms or Split-Half Reliability
	Slide 16: More about Two Total-Score  Reliability… What could go wrong?
	Slide 17: 3. Internal Consistency Reliability
	Slide 18: Where Cronbach’s Alpha comes from…
	Slide 19: Cronbach’s Alpha:  It’s not what you think.
	Slide 20: Alpha: What could go wrong?
	Slide 21: How to Get Alpha UP:  More Items!
	Slide 22: Kuder Richardson (KR) 20:  Alpha for Binary Items (Indicators)
	Slide 23: Limited Reliability of Binary Indicators
	Slide 24: Correlations for Binary or Ordinal Indicators
	Slide 25: More Correlations: Pearson vs. Intraclass
	Slide 26: Intraclass Correlation Example
	Slide 27: Reliability in a Perfect World, Part 1
	Slide 28: Assumptions about Indicators When Calculating Score Reliability in CTT
	Slide 29: Reliability in a Perfect World, Part 2
	Slide 30: Using Reliability Coefficients  SE
	Slide 31: 95% CIs for Individual Score:  Verbal M=150.4, SD=8.5, range=130 to 170; SE=1.4 to 3.7
	Slide 32: 95% CIs for Individual Score: Quantitative M=153.4, SD=9.4, range=130 to 170; SE=1.0 to 3.5
	Slide 33: Intermediate Summary: CTT Reliability


