Classical Test Theory (CTT) for Assessing Reliability

- Topics:
 - > Review of concepts and summary statistics
 - > Characterizing differences between indicators
 - > CTT-based assessments of reliability
 - Why alpha doesn't really matter
 - Why standard errors of measurement should matter

Review: What are we trying to do?

- Measure a **latent trait**: unobservable ability, characteristic, attitude, or other type of individually-varying construct
 - > "Latent" = Not directly observable
 - "Trait" = true score, factor score, or theta as predictor(s) in measurement models; *aka*, latent construct, variable, or factor
 - > The LTMMs we will cover are for **continuous latent traits**
- How to measure a latent trait? Collect observed responses from indicators chosen to measure the latent trait
 - "Indicator" = item, trial, or other response-specific outcome
 - Indicators can be any kind of variable (categorical or quantitative)
- How do we know we've done good job measuring the trait?
 Collect evidence using the indicator responses...
 - > Two distinct ways such evidence gets used to represent a trait:
 - Build a **composite** (sum or average across indicator responses) \rightarrow CTT
 - Use all indicator responses as outcomes of latent trait predictor instead
 → this is what happens in latent trait measurement models (LTMMs)

Big Picture of Instrument Development

- Primary concerns about the use of an instrument to measure one or more latent traits have a hierarchical structure:
 - > **Validity**: Extent to which an instrument measures what it is supposed to
 - Validity is always a matter of degree and depends critically on how it is used
 - Almost always demonstrated by external evidence: relationships to measures of other constructs in expected directions (e.g., discriminant and convergent validity)
 - An essential precursor to validity is reliability: Extent to which an instrument measures a latent trait with sufficient consistency (i.e., extent to which the same result would be obtained repeatedly)
 - "Validity is measuring the right thing; reliability is measuring the thing right"
 - Reliability indices will be provided differently across CTT and LTMMs (stay tuned)
 - An important precursor to reliability is dimensionality: Accuracy of the mapping of the observed indicators to the latent traits they measure
 - Reliability is per trait! Most reliability indices assume unidimensional traits
 - What follows in this lecture presupposes that dimensionality is KNOWN!

Classical Test Theory (CTT)

- The **TOTAL** is the unit of analysis: $Y_{total} = True + Error$
 - > True score *T*:
 - Best estimate of latent trait is **mean over infinite replications**
 - > Error e:
 - Expected value (mean) of 0; theoretically uncorrelated with T
 - Errors are supposed to cancel out over repeated observations
 - > So the expected value of *T* is *Y*_{total}
 - This translates into $Y_{total} = T$ true-score in practice
 - *Y_{total}* is referred to as a **total-score**, test-score, or scale-score
- Provides a framework with which to quantify *reliability*
 - > What proportion of **total-score** variance is due to **true-score** variance?
 - Understanding parts of CTT logic for quantifying reliability relies on traditional univariate and bivariate summary statistics for indicators...

Means, Variances, Covariances, and Correlations

Using population notation: N = # subjects, s = subject, i = item for y_{is}

(Arithmetic) Mean (µ):

Central tendency of y_{is}

Variance (Var):

Dispersion of y_{is} in squared units

Covariance (Cov):

How outcomes (e.g., y_{1s} and y_{2s}) go together in original metrics (unstandardized)

Pearson Correlation (r):

Covariance that has been standardized into -1 to 1

$$u_i = \frac{\sum_{s=1}^N y_{is}}{N}$$

$$Var(y_i) = \sigma_{y_i}^2 = \frac{\sum_{s=1}^{N} (y_{is} - \bar{y}_i)^2}{N}$$

$$Cov(y_1, y_2) = \sigma_{y_1, y_2} = \frac{\sum_{s=1}^{N} [(y_{1s} - \bar{y}_1)(y_{2s} - \bar{y}_2)]}{N}$$

$$r(y_1, y_2) = \frac{Cov(y_1, y_2)}{\sqrt{Var(y_1)}\sqrt{Var(y_2)}}$$

What about Categorical Indicators?

- Computing means, variances, covariances, and correlations is standard and intuitive for **quantitative indicators**
 - > When the numbers are actually numbers (interval measurement)
 - > e.g., magnitude estimation slider bars, response times
- But observed indicators are **more often categorical**:
 - > Binary (i.e., dichotomous) \rightarrow 2 options
 - > Ordinal (i.e., "Likert scale") \rightarrow 3+ ordered options
 - > Nominal (i.e., "multinomial") \rightarrow 3+ unordered options
- For nominal indicators, means and variances make no sense...
 - Frequency of each category is needed instead (stay tuned!)
 - But what about summarizing binary or ordinal indicators?

Binary and Ordinal Indicators

- For binary indicators (y_{is} coded 0 or 1), variance is not a separately estimated quantity (as it is in quantitative indicators)
 - > If p_i = proportion of 1 values, and q_i = proportion of 0 values:
 - > Mean $\mu_i = p_{i'} Var(y_i) = p_i * q_i$ (same result even if computed as usual)

		Mea	an an	d Vari	ance	of a B	Sinary	Varia	ble		
Mean (p_i)	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	1.0
Variance	.0	.09	.16	.21	.24	.25	.24	.21	.16	.09	.0

- For **ordinal indicators**, you may see means and variances calculated as usual, but they should give you pause...
 - e.g., 1=Strongly Disagree, 2=Disagree, 3=Neutral, 4=Agree,
 5=Strongly Agree.... could equally be 1, 20, 300, 4000, 50000
 - Maximum variance is limited by
 k = # of response options used

$$Var_{max}(y_i) = \frac{(k-1)^2}{2}$$

Differences Between Indicators

- All indicators can be characterized by two properties with respect to how they map onto the latent trait that they measure: item difficulty and item discrimination
 - > Item = indicator, but the term "item" is always used in this context
 - > Properties will be indexed differently across CTT and LTMMs
- Item difficulty is the indicator's location on the metric of the latent trait; also known as item "severity" for non-ability traits
 - > i.e., an item of difficulty level X measures people at trait level X well
 - So, to measure people with a range of trait levels accurately, you need to include indicators that have a corresponding range of item difficulty
- Item discrimination is how strongly the indicator relates to the trait ("discrimination" is still used for non-ability traits)
 - Is the degree to which the indicator differentiates among persons in their latent traits (should be positive, and stronger is always better)

Difficulty and Discrimination in CTT

- Under the belief that the best estimate of the latent trait is the total-score across indicators (i.e., sum or average) in CTT:
- Item difficulty/severity (location on the latent trait) is the indicator's mean across respondents
 - Only applicable to binary or quantitative items; also ordinal if you believe they are numbers (which is usually what people do in CTT)
 - Note that the difficulty terminology is conceptually backwards: An item with a higher mean is labeled as "higher difficulty" even though more people did well than not (so items with higher means are actually easier)
 - For this reason, I think it's ok to describe item means as indices of "easiness" instead
 - In LTMMs, difficulty/severity will become some kind of model intercept (which will break the problematic tie of respondents to indicators)
- Item difficulty/severity is often ignored in evaluating items in CTT, except when it causes problems with discrimination...

Difficulty and <u>Discrimination</u> in CTT

- Under the belief that the best estimate of the latent trait is the total-score across indicators (i.e., sum or average) in CTT:
- Item discrimination (relationship to the latent trait) is the indicator's Pearson correlation with the total-score
 - Called "item-total" correlation; often replaced with "item-remainder" correlation (i.e., total without that item) so the correlation isn't inflated
 - Only applicable to binary or quantitative items; also to ordinal if you believe they are numbers (which is usually what people do in CTT)
 - > In LTMMs, discrimination will become some kind of model **slope**
- Items of extreme difficulty/severity have a restricted range, which may result in smaller item-total correlations
 - Following common advice to remove extreme items will reduce your ability to measure respondents of corresponding extreme trait levels!

Reliability of CTT Total-Scores

- Before and after screening/selecting items (i.e., an iterative process), a total-score is created: a sum or mean across indicator responses
 - > The **total-score** is now the unit of analysis: $Y_{total} = True + Error$
 - Even though the total-score doesn't know what kind of indicators were used to create it, the total-score is always treated as a quantitative variable (i.e., "ordinal-treated-as-interval")
- Then we need to quantify **reliability**: the **consistency** with which Y_{total} measures True for a given respondent (i.e., subject)
 - > Best index of T for each subject is supposed to be the mean Y_{total} over infinite replications... but that's not the kind of data usually collected!
 - Instead of multiple replications of total-score for a single respondent, more often collected are single total-scores for multiple respondents!
 - So reliability is instead defined using **between-subject sources** of respondent variance: *Reliability* = Var(True) / Var(Y_{total})
 - But to quantify reliability, we need more than one *Y*_{total} per subject...

How Only **Two Total-Scores** Can Yield a Reliability Coefficient in CTT

- $\cdot y_{1s} = T_s + e_{1s}$
- $\cdot y_{2s} = T_s + e_{2s}$

<u>CTT assumptions to calculate reliability:</u>

- Errors e_{1s} and e_{2s} have equal variance
- Total-scores y_{1s} and y_{2s} have equal variance
- Same subject-specific true score (T_s) at both times
- e_{1s} and e_{2s} are uncorrelated with each other and T_s
- Pearson Correlation between total-scores:

>
$$r(y_1, y_2) = \frac{\sigma_{y_1, y_2}}{\sigma_{y_1} \sigma_{y_2}} = \frac{\sigma_{T+e_1, T+e_2}}{\sigma_{y_1} \sigma_{y_2}} = \frac{\sigma_{T, T} + \sigma_{T, e_1} + \sigma_{T, e_2} + \sigma_{e_1, e_2}}{\sigma_{y_1} \sigma_{y_2}} = \frac{\sigma_T^2}{\sigma_y^2}$$

- In other words: $r(y_1, y_2) = Reliability = Var(True) / Var(Y_{total})$
 - So the Pearson correlation of two total-scores indexes how much of the observed total-score variance is due to "true" between-subject differences (if we believe all these untested assumptions, that is)

3 Ways of Quantifying Reliability

- After measuring variance across subjects* two ways:
 - 1. Consistency of same test over time
 - Test-retest reliability
 - 2. Consistency over alternative test forms
 - Alternative forms reliability
 - Split-half reliability
 - 3. Consistency across items within a test
 - Internal consistency (alpha or KR-20)
- ** FYI: Some would say we have violated "<u>ergodicity</u>" by quantifying reliability in this between-subjects way:
 - What factors cause differences between respondents is not the same as what factors causes differences within a respondent over occasions...

1. Test-Retest Reliability... What could go wrong?

- In a word, **CHANGE**: Test-retest reliability assumes that any difference in true-score is due to measurement error
 - > Error = a characteristic of the test
 - > It could be due to a characteristic of the person, too
- In a word, MEMORY: Assumes that testing procedure has no impact on a given subject's true-score, although:
 - > Reactivity can lead to *higher* scores: learning, familiarity, memory...
 - > Reactivity can lead to *lower* scores: fatigue, boredom...
- In a word (or two), **TEMPORAL INTERVAL**
 - > Which test-retest correlation is the "right" one?
 - > Should vary as a function of time (longer intervals \rightarrow smaller correlation)
 - Long enough to limit memory, but short enough to avoid real change... how long is that, exactly????

2. Alternative Forms or Split-Half Reliability

• Two forms of same test administered "close" in time

- > Different indicators on each, but still measuring same construct
- Forms need to be "parallel" this means no systematic differences between in the summary statistics of the two total-scores
 - Responses should differ ONLY because of random fluctuation (error)
- OR just take one test and **split it in half**! \rightarrow Ta-da, two forms!
 - > e.g., odd indicators = y_{1s} , even indicators = y_{2s}
 - > BUT reliability is now based on half as many indicators!
 - What if we could **extrapolate** what reliability would be with twice as many indicators... Can do so using a reduced form of the "Spearman Brown Prophecy Formula" (**assuming parallel indicators**; stay tuned)
 - $Reliability_{new} = 2 * Reliability_{old} / (1 + Reliability_{old})$
 - e.g., $Reliability_{old} = .75$? $Reliability_{new} = 2 * .75 / 1.75 = .86$

More about Two Total-Score Reliability... What could go wrong?

Alternative Forms Reliability:

- In a word, **PARALLEL**:
 - Have to believe forms are sufficiently parallel: Both total-scores have same mean, same variance, same true-scores and true-score variance, same error variance...
 - AND by extrapolation, all indicators within each test and across tests have equivalent psychometric properties and same correlations among them
 - > Otherwise, indicator differences could create total-score differences
 - > Still susceptible to problems caused by reactivity (change or retest effects)

Split-Half Reliability:

 In a word (or two), WHICH HALF: There are many possible splits that would yield different reliability estimates... (e.g., 125 splits for 10 indicators)

3. Internal Consistency Reliability

- For quantitative indicators, this is usually **Cronbach's Alpha**...
 - > Or "Guttman-Cronbach alpha" (Guttman 1945 < Cronbach 1951)
 - > Equivalent form of alpha for binary items is named "KR 20"
- Alpha has been described in multiple ways:
 - > Is the mean of all possible split-half correlations
 - > As an index of "internal consistency"
 - Although Rod McDonald disliked this term... everyone else uses it
- Alpha is a lower-bound estimate of reliability under assumptions that all indicator responses:
 - > Are **unidimensional** \rightarrow MUST measure a single latent trait
 - Are tau-equivalent → "true-score equivalent" → (sufficiently) equal item discrimination → equally related to the true score
 - > Have **uncorrelated errors** (otherwise \rightarrow multidimensional)

Where Cronbach's Alpha comes from...

- The sum of the *I* indicator variances (e.g., I = 3 here):
 - ► $\sum_{i=1}^{I} Var(y_i) = Var(y_1) + Var(y_2) + Var(y_3) \rightarrow$ only the variances
 - > Will become a baseline for expected amount of total-score variation
- Variance of the I indicators' total-score is given by the sum the indicators' variances PLUS their covariances:
 - > $Var(Y_{total}) = Var(y_1) + Var(y_2) + Var(y_3)$ + $2Cov(y_1, y_2) + 2Cov(y_1, y_3) + 2Cov(y_2, y_3)$
 - > Why is the **2** needed?
 - Covariance matrix is symmetric
 - Sum the whole thing to get to the variance of the sum of the indicators
 - So should be greater than sum of indicator variances above if they have something in common → covariance

	<i>y</i> ₁	y_2	<i>y</i> ₃
${\mathcal Y}_1$	$\sigma_{y_1}^2$	σ_{y_1,y_2}	σ_{y_1,y_3}
y_2	σ_{y_1,y_2}	$\sigma_{y_2}^2$	σ_{y_2,y_3}
y_3	σ_{y_1,y_3}	σ_{y_2,y_3}	$\sigma_{y_3}^2$

Cronbach's Alpha: It's not what you think.

• *alpha* (
$$\alpha$$
) = $\frac{I}{I-1} * \frac{Var(Y_{total}) - \sum_{i=1}^{I} Var(y_i)}{Var(Y_{total})}$ $I = #$ indicators

> Numerator reduces to the indicator covariances \rightarrow if the indicators are related, the variance of the indicators' total-score, $Var(y_{total})$, should be bigger than the sum of the indicator variances, $\sum_{i=1}^{I} Var(y_i)$

• Easier way:
$$alpha(\alpha) = \frac{I\bar{r}}{1 + [\bar{r}(I-1)]}$$
 \bar{r} = average inter-indicator
Pearson correlation

> Two ways to make alpha bigger: (1) Get more indicators, (2) increase the average inter-indicator correlation (but its's hard to do both at once)

- Alpha reliability assumes that all indicators are unidimensional
 - ➢ Formula does not take into account the spread of the inter-indicator correlations → so alpha does NOT assess indicator dimensionality!
- **Alpha** reliability assumes indicators have **equal discrimination** (tauequivalent; equal relation to latent trait) with **uncorrelated errors**
 - > Indicator properties are not included in the formula \rightarrow exchangeable

Alpha: What could go wrong?

 Alpha does not index unidimensionality → it does NOT index the extent to which the indicators measure the same construct

TABLE 1 Alpha Re	8.2. eliabil	Interi lity of	tem (.81	Correl	lation	Matr	ices f	or Tu	vo Hy	pothe	tical Tests v	with t	the Sa	ime C	oeffic	ient	
			Test	A wit	h 10 i	tems						Test	B wit	h 6 ite	ems		
Variable	1	2	3	4	5	6	7	8	9	10	Variable	1	2	3	4	5	
1	-										1	-	1997.1		-	~	-
2	.3	-									2	.6	20				
3	.3	.3									3	.6	.6	_			
4	.3	.3	.3	-							4	.3	.3	.3			
5	.3	.3	.3	.3	-						5	.3	.3	.3	.6	~~~	
6	.3	.3	.3	.3	.3	-					6	.3	.3	.3	.6	6	
7	.3	.3	.3	.3	.3	.3	-							0.755			
8	.3	.3	.3	.3	.3	.3	.3	-									
9	.3	.3	.3	.3	.3	.3	.3	.3									
10	.3	.3	.3	.3	.3	.3	.3	.3	.3	-22							

- The variability across the inter-indicator correlations matters, too!
- We will use LTMMs predicting indicator responses to examine dimensionality

Example from: John, O. P., & Benet-Martinez, V. (2014). Measurement: Reliability, construct validation, and scale construction. In H.T. Reis & C. M. Judd (Eds.), Handbook of research methods in social and personality psychology (pp. 3473-503, 2nd ed.). New York, NY: Cambridge University Press.

How to Get Alpha UP: More Items!

Given indicator \bar{r} , $alpha = \frac{l\bar{r}}{1 + [\bar{r}(l-1)]}$ Given alpha (α), $\bar{r} = \frac{\alpha}{l - (\alpha l) + \alpha}$

Btw: For the 2020 GRE psychology subject test, (KR-20) **alpha = .95**... for about 205 items, this means $\bar{r} = .084!$

Number of	Average Indicator \bar{r}								
Indicators I	.2	.4	.6	.8					
2	.333	.572	.750	.889					
4	.500	.727	.857	.941					
6	.600	.800	.900	.960					
8	.666	.842	.924	.970					
10	.714	.879	.938	.976					
1.0									

GRE 2020-2021 Test Information: <u>https://www.ets.org/s/gre/pdf/gre_guide.pdf</u> PSQF 6249: Lecture 3

Kuder Richardson (KR) 20: Alpha for Binary Items (Indicators)

• From 'Equation 20' in their 1937 paper:

 $\operatorname{KR}20 = \frac{k}{k-1} \left(\frac{\operatorname{variance of total Y} - \operatorname{sum of } pq \text{ over items}}{\operatorname{variance of total Y}} \right)$

- k = # items (*I* before) p = proportion of 1sq = proportion of 0s
- Numerator again reduces to covariance among indicators...
 - > **Sum of the indicator variances** (sum over indicators of *pq*) is just the variances
 - > Variance of the indicators' total-score has their covariances in it, too
 - > Numerator reduces to the indicator covariances \rightarrow if the indicators are related, the variance of the sum of the indicators $Var(y_{total})$ should be bigger than the sum of the indicator variances $\sum_{i=1}^{l} Var(y_i)$
 - > So KR20 is the same thing as alpha (it's just a computational shortcut)
 - > Btw, this is how reliability has been computed for the GRE subtests... !

Limited Reliability of Binary Indicators

- The possible **Pearson's** *r* **for binary variables will be limited** when they are not evenly split into 0/1 because their variance depends on their mean
 - > Remember: Mean = p_i , Variance = $p_i(1 p_i) = p_iq_i$
- If two indicators (x and y) differ in p_i , such that $p_y > p_x$
 - > Maximum covariance: $Cov(x, y) = p_x(1 p_y)$
 - > This problem is known as "range restriction"
 - Here this means the maximum Pearson's r will be smaller than ±1 it should be:

$$r_{x,y} = \sqrt{\frac{p_x(1 - p_y)}{p_y(1 - p_x)}}$$

- > Some examples using this formula to predict maximum Pearson r values \rightarrow
- > So if indicator \bar{r} is limited, so is reliability as measured by alpha (or KR-20)...

рх	ру	max r
0.1	0.2	0.67
0.1	0.5	0.33
0.1	0.8	0.17
0.5	0.6	0.82
0.5	0.7	0.65
0.5	0.9	0.33
0.6	0.7	0.80
0.6	0.8	0.61
0.6	0.9	0.41
0.7	0.8	0.76
0.7	0.9	0.51
0.8	0.9	0.67

Correlations for Binary or Ordinal Indicators

- **Pearson correlation**: between two quantitative variables, working with the observed distributions as they actually are
- **Phi correlation**: between two binary variables, still working with the observed distributions (= Pearson with computational shortcut)
- Point-biserial correlation: between one binary and one quantitative variable, still working with the observed distributions (and still = Pearson)

Line of Suspended Disbelief to Reduce Impact of Range Restriction

- Tetrachoric correlation: between "underlying continuous" distributions of two actually binary variables (not = Pearson)
- Biserial correlation: between "underlying continuous" (but really binary) and observed quantitative variables (not = Pearson)
- Polychoric correlation: between "underlying continuous" distributions of two ordinal variables (not = Pearson)
- We will make use of **tetrachoric and polychoric correlations** in LTMMs predicting binary and ordinal indicator responses (limited-info estimation)

More Correlations: Pearson vs. Intraclass

- Pearson's r is problematic for assessing reliability across raters, because it ignores relevant differences in mean and variance across raters by standardizing each variable separately
 - > e.g., **multiple raters** (y_{1s}, y_{2s}) each provide scores for the same set of targets
- Solution: use an "Intraclass Correlation" (ICC) instead, which standardizes across all raters using a common mean and variance

For example, for two raters: ICC(y₁, y₂) =
$$\frac{\sum_{s=1}^{N} [(y_{1s} - \overline{y})(y_{2s} - \overline{y})]}{(N-1)*s^2}$$

where $\overline{y} = \frac{\sum_{s=1}^{N} [(y_{1s} + y_{2s})]}{2N}$ and $s_y^2 = \frac{\sum_{s=1}^{N} (y_{1s} - \overline{y})^2 + \sum_{s=1}^{N} (y_{2s} - \overline{y})^2}{2N-1}$
> ICC is also a ratio of variances: $ICC = \frac{s_{Between-Targets}^2 + s_{Between-Raters}^2 + s_{Within-both}^2}{s_{Between-Targets}^2 + s_{Between-Raters}^2 + s_{Within-both}^2}$

- **ICCs can readily be extended** to more than two raters, as well as to quantify the effect of multiple distinct sources of sampling variance
 - > e.g., multiple raters of multiple targets across days—how much variance is due to each?
 - Btw, this is the basis of "Generalizability Theory" (or G-Theory)—different variance components can be used to compute different reliability types (relative or absolute)

Intraclass Correlation Example

Reliability in a Perfect World, Part 1

- What would my reliability be if I just added more indicators?
- Spearman-Brown Prophesy Formula
 - $\succ Reliability_{NEW} = \frac{ratio*reliability_{old}}{1 + [(ratio-1)*reliability_{old}]}$
 - > For example:
 - Old reliability = .40
 - Ratio = 5 times as many indicators (had 10, what if we had 50)
 - New reliability = .77
- To use this formula, you must assume **<u>PARALLEL</u>** indicators
 - All indicator discriminations equal, all indicator error variances equal, all covariances and correlations among indicators are equal, too
 - Unlikely) assumption of parallel indicators is testable in LTMMs

new indicators

old indicators

ratio =

Assumptions about Indicators When Calculating Score Reliability in CTT

- Use of alpha as an index of reliability of total-scores requires an assumption of tau-equivalent indicators:
 - > aka, "true-score equivalence" \rightarrow equal item discrimination
 - > Translates to **equal covariances** among indicators
 - But not necessarily equal correlations...(because still different error variances)
- Use of Spearman-Brown Prophesy formula to predict new reliability requires an assumption of parallel indicators:
 - > Tau-equivalent indicators PLUS equal error variances
 - > This translates into equal correlations among indicators, too
- Btw, parallel indicators is also required to get a perfect correlation between latent trait estimates (of predictors as used in an LTMM) and total-scores as latent trait estimates in CTT
 - See <u>McNeish & Wolf (2020)</u> for constraints needed (in your readings)

Reliability in a Perfect World, Part 2

Attenuation-corrected correlations

- > What would our correlation between two latent traits be if our total-scores were "perfectly reliable"?
- > $r_{new} = r_{old} \sqrt{rel_x * rel_y} \rightarrow all \text{ from same sample}$
- For example:
 - Old correlation between x and y: r = .38
 - Reliability_x = .25
 - $Reliability_y = .55$
 - New and "unattenuated" correlation: r = 1.03
- > Anyone see a problem here?
 - Btw—this logic forms the basis of SEM $\ensuremath{\textcircled{\odot}}$

Using Reliability Coefficients \rightarrow SE

- Reliability coefficients (Rel) are sample-level statistics...
 - But reliability is a means to an end in interpreting a score for a given individual—we use reliability to get the error variance
 - > $Var(True) = Var(Y_{total}) * Rel;$ so $Var(Error) = Var(Y_{total}) Var(True)$
 - > *SD*(*error*) is individual standard error of measurement, *SE*
 - > 95% CI for individual total-score = $Y_{total} \pm (1.96 * SE)$
 - Gives precision of true score estimate in the metric of the original total-score
- e.g., if $Var(Y_{total}) = 100$ and y_{total} for subject s = 50
 - > Rel = .91, Var(Error) = 9, SE = 3 → $95\% CI \approx 44$ to 56 Rel = .75, Var(Error) = 25, SE = 5 → $95\% CI \approx 40$ to 60
 - Note this assumes a symmetric distribution, and thus the limits of the Cl can go out of bounds of the scale for extreme scores
 - > Note this version also assumes the **SE for each person is the same!**
 - > Cue real-world example using the pre-pandemic GRE...

95% Cls for Individual Score: Verbal M=150.4, SD=8.5, range=130 to 170; SE=1.4 to 3.7

GRE 2020-2021 Test Information was available here, but it has since been removed: <u>https://www.ets.org/s/gre/pdf/gre_guide.pdf</u> PSQF 6249: Lecture 3

95% Cls for Individual Score: Quantitative M=153.4, SD=9.4, range=130 to 170; SE=1.0 to 3.5

GRE 2020-2021 Test Information: <u>https://www.ets.org/s/gre/pdf/gre_guide.pdf</u> PSQF 6249: Lecture 3

Intermediate Summary: CTT Reliability

- CTT unit of analysis is the TOTAL: $Y_{total} = True + Error$
 - > Total-score is best estimate of True Score (i.e., the Latent Trait)
 - I will call this an "ASU" measurement model (ASU = Add Stuff* Up)
 - ASU model assumes unidimensionality the only thing that matters is the one *True*
 - Reliability of total-score cannot be quantified without assumptions that range from somewhat plausible to downright ridiculous (testable in item-level models)

Individual indicator responses are not included, which means:

- No way of explicitly testing dimensionality
- > Assumes all items are equally discriminating ("true-score-equivalent")
 - All items are equally related to the latent trait (also called "tau-equivalent")
- > To make a test better, you need more items
 - What kind of items? More.
- > Measurement error is assumed constant across the latent trait
 - People low-medium-high in True Score are measured equally well